The industry of cellular networks is evaluating the new architectures to ensure an enhanced performance. Fog communication is the new paradigm that presented to unleash edge computing. In this paper, we introduced a m...The industry of cellular networks is evaluating the new architectures to ensure an enhanced performance. Fog communication is the new paradigm that presented to unleash edge computing. In this paper, we introduced a mathematical framework to evaluate the trade-offs of Fog proposal. Specifically, testing the power consumption, delay and energy efficiency in comparison with traditional cloud radio access networks. Although the literature has showed that fog radio access networks provides an enhanced delay performance, this paper shows that an enlarged amount of power is consumed, which degrades the energy efficiency in comparison with traditional cloud counterpart. However, the level of such devolution depends on the number of deployed fog devices that directly influences the power consumption. This paper also shows that enhancing the delay by using fog architecture is not a straight forward process, but requires a particular caring in terms of choosing the appropriate mode while placing/installing fog functions within fog devices.展开更多
基金supported by University of Diyala,college of Engineering,department of communications,Diyala,Iraq.
文摘The industry of cellular networks is evaluating the new architectures to ensure an enhanced performance. Fog communication is the new paradigm that presented to unleash edge computing. In this paper, we introduced a mathematical framework to evaluate the trade-offs of Fog proposal. Specifically, testing the power consumption, delay and energy efficiency in comparison with traditional cloud radio access networks. Although the literature has showed that fog radio access networks provides an enhanced delay performance, this paper shows that an enlarged amount of power is consumed, which degrades the energy efficiency in comparison with traditional cloud counterpart. However, the level of such devolution depends on the number of deployed fog devices that directly influences the power consumption. This paper also shows that enhancing the delay by using fog architecture is not a straight forward process, but requires a particular caring in terms of choosing the appropriate mode while placing/installing fog functions within fog devices.