The equilibrium structure and the electronic properties of III-V zinc-blende AlP, InP semiconductors and their alloy have been studied in detail from first-principles calculations. A full-potential linear muffin-tin-o...The equilibrium structure and the electronic properties of III-V zinc-blende AlP, InP semiconductors and their alloy have been studied in detail from first-principles calculations. A full-potential linear muffin-tin-orbital (FP-LMTO) method has been used in conjunction with both the local-density approximation (LDA) and the generalized-gradient approximation (GGA) to investigate the effect of increasing the concentration of aluminum on the structural properties such as the lattice constants and the bulk moduli. Besides, we report the concentration dependence of the electronic band structure, the direct-indirect band gap crossovers and bowing. Using the approach of Zunger and co-workers the microscopic origins of the gap bowing were also explained. A reasonable agreement is found in comparing our results with other theoretical calculations.展开更多
The structural and electronic properties of the ternary CuxAg1–xI, alloy have been calculated, using the full-potential linear muffin-tin-orbital (FP-LMTO) method based on density functional theory, within both the l...The structural and electronic properties of the ternary CuxAg1–xI, alloy have been calculated, using the full-potential linear muffin-tin-orbital (FP-LMTO) method based on density functional theory, within both the local density approximation and the generalized gradient approximation (GGA). The equilibrium lattice constants and the bulk modulus are compared with previous theoretical calculations. The concentration dependence of the electronic band structure and the direct-indirect band gaps is also investigated. Using the approach of Zunger and co-workers the microscopic origins of the gap bowing were also explained.展开更多
Computational calculations using density functional theory(DFT) were performed for the first time using the full potential linearized augmented plane wave plus local orbital method(FP-LAPW + LO) to determine the struc...Computational calculations using density functional theory(DFT) were performed for the first time using the full potential linearized augmented plane wave plus local orbital method(FP-LAPW + LO) to determine the structural, elastic, electronic and magnetic properties of europium-based cubic perovskites EuYO_(3)(Y=Cr, Mn, Fe). The exchange correlation potentials of GGA along with some analytical methods were adopted for the computation of structural and elastic properties. Moreover, the GGA + U formalism was also added for obtaining more precise electronic and magnetic properties, particularly to address the Eu-4f and Y-3d orientations in the spin-polarized double cell symmetry. The observed lattice parameters of these compounds are consistent with experiment. The observed bulk moduli predict that EuCrO_(3) is harder and less compressible than EuMnO_(3) and EuFeO_(3). The calculated tolerance factors of these compounds are within the cubic symmetry range. Our computed critical radius of EuCrO_(3) shows that EuCrO_(3) has a larger migration energy. Based on their elastic properties, these compounds are ductile in nature. We also computed the thermal properties of these compounds. The band structures and density of states show that these compounds are metallic in character. The lowest ground state energy and magnetic moments of these compounds expose their ferromagnetic nature. The metallic nature and strong ferromagnetism of these compounds make them promising applicants for application in spintronic.展开更多
文摘The equilibrium structure and the electronic properties of III-V zinc-blende AlP, InP semiconductors and their alloy have been studied in detail from first-principles calculations. A full-potential linear muffin-tin-orbital (FP-LMTO) method has been used in conjunction with both the local-density approximation (LDA) and the generalized-gradient approximation (GGA) to investigate the effect of increasing the concentration of aluminum on the structural properties such as the lattice constants and the bulk moduli. Besides, we report the concentration dependence of the electronic band structure, the direct-indirect band gap crossovers and bowing. Using the approach of Zunger and co-workers the microscopic origins of the gap bowing were also explained. A reasonable agreement is found in comparing our results with other theoretical calculations.
文摘The structural and electronic properties of the ternary CuxAg1–xI, alloy have been calculated, using the full-potential linear muffin-tin-orbital (FP-LMTO) method based on density functional theory, within both the local density approximation and the generalized gradient approximation (GGA). The equilibrium lattice constants and the bulk modulus are compared with previous theoretical calculations. The concentration dependence of the electronic band structure and the direct-indirect band gaps is also investigated. Using the approach of Zunger and co-workers the microscopic origins of the gap bowing were also explained.
基金Project supported by the Higher Education of Pakistan Under National Research Grant Program(NRPU)(Grant No:14408/NRPU/R&D/HEC/20212021)。
文摘Computational calculations using density functional theory(DFT) were performed for the first time using the full potential linearized augmented plane wave plus local orbital method(FP-LAPW + LO) to determine the structural, elastic, electronic and magnetic properties of europium-based cubic perovskites EuYO_(3)(Y=Cr, Mn, Fe). The exchange correlation potentials of GGA along with some analytical methods were adopted for the computation of structural and elastic properties. Moreover, the GGA + U formalism was also added for obtaining more precise electronic and magnetic properties, particularly to address the Eu-4f and Y-3d orientations in the spin-polarized double cell symmetry. The observed lattice parameters of these compounds are consistent with experiment. The observed bulk moduli predict that EuCrO_(3) is harder and less compressible than EuMnO_(3) and EuFeO_(3). The calculated tolerance factors of these compounds are within the cubic symmetry range. Our computed critical radius of EuCrO_(3) shows that EuCrO_(3) has a larger migration energy. Based on their elastic properties, these compounds are ductile in nature. We also computed the thermal properties of these compounds. The band structures and density of states show that these compounds are metallic in character. The lowest ground state energy and magnetic moments of these compounds expose their ferromagnetic nature. The metallic nature and strong ferromagnetism of these compounds make them promising applicants for application in spintronic.