Structured catalysts for the simultaneous removal of soot and nitrogen oxides were prepared by means of coating cordierite monoliths with alumina-based suspensions containing Cu, Co or Fe and Cs as the catalytically a...Structured catalysts for the simultaneous removal of soot and nitrogen oxides were prepared by means of coating cordierite monoliths with alumina-based suspensions containing Cu, Co or Fe and Cs as the catalytically active phase. Textural and chemical properties of the coated monoliths were determined by means of N2-physisorption, SEM and temperature programmed reduction. Their activity in the simultaneous removal of soot and NOx was assayed in a lab-scale installation, using a carbon black as diesel surrogate. Catalysts containing Cs exhibited significant activity in deNOx, however soot oxidation activity is poorly enhanced probably due to the low NO2 evolution, pointing to a different NOx adsorption mechanism in the present case, in comparison to previous observations on analogous K and Ba containing catalysts.展开更多
文摘Structured catalysts for the simultaneous removal of soot and nitrogen oxides were prepared by means of coating cordierite monoliths with alumina-based suspensions containing Cu, Co or Fe and Cs as the catalytically active phase. Textural and chemical properties of the coated monoliths were determined by means of N2-physisorption, SEM and temperature programmed reduction. Their activity in the simultaneous removal of soot and NOx was assayed in a lab-scale installation, using a carbon black as diesel surrogate. Catalysts containing Cs exhibited significant activity in deNOx, however soot oxidation activity is poorly enhanced probably due to the low NO2 evolution, pointing to a different NOx adsorption mechanism in the present case, in comparison to previous observations on analogous K and Ba containing catalysts.