The number of mobile devices accessing wireless networks isskyrocketing due to the rapid advancement of sensors and wireless communicationtechnology. In the upcoming years, it is anticipated that mobile datatraffic wo...The number of mobile devices accessing wireless networks isskyrocketing due to the rapid advancement of sensors and wireless communicationtechnology. In the upcoming years, it is anticipated that mobile datatraffic would rise even more. The development of a new cellular networkparadigm is being driven by the Internet of Things, smart homes, and moresophisticated applications with greater data rates and latency requirements.Resources are being used up quickly due to the steady growth of smartphonedevices andmultimedia apps. Computation offloading to either several distantclouds or close mobile devices has consistently improved the performance ofmobile devices. The computation latency can also be decreased by offloadingcomputing duties to edge servers with a specific level of computing power.Device-to-device (D2D) collaboration can assist in processing small-scaleactivities that are time-sensitive in order to further reduce task delays. The taskoffloading performance is drastically reduced due to the variation of differentperformance capabilities of edge nodes. Therefore, this paper addressed thisproblem and proposed a new method for D2D communication. In thismethod, the time delay is reduced by enabling the edge nodes to exchangedata samples. Simulation results show that the proposed algorithm has betterperformance than traditional algorithm.展开更多
文摘The number of mobile devices accessing wireless networks isskyrocketing due to the rapid advancement of sensors and wireless communicationtechnology. In the upcoming years, it is anticipated that mobile datatraffic would rise even more. The development of a new cellular networkparadigm is being driven by the Internet of Things, smart homes, and moresophisticated applications with greater data rates and latency requirements.Resources are being used up quickly due to the steady growth of smartphonedevices andmultimedia apps. Computation offloading to either several distantclouds or close mobile devices has consistently improved the performance ofmobile devices. The computation latency can also be decreased by offloadingcomputing duties to edge servers with a specific level of computing power.Device-to-device (D2D) collaboration can assist in processing small-scaleactivities that are time-sensitive in order to further reduce task delays. The taskoffloading performance is drastically reduced due to the variation of differentperformance capabilities of edge nodes. Therefore, this paper addressed thisproblem and proposed a new method for D2D communication. In thismethod, the time delay is reduced by enabling the edge nodes to exchangedata samples. Simulation results show that the proposed algorithm has betterperformance than traditional algorithm.