Liver disease is characterized by breath exhalation of peculiar volatile organic compounds(VOCs).Thanks to the availability of sensitive technologies for breath analysis,this empiric approach has recently gained incre...Liver disease is characterized by breath exhalation of peculiar volatile organic compounds(VOCs).Thanks to the availability of sensitive technologies for breath analysis,this empiric approach has recently gained increasing attention in the context of hepatology,following the good results obtained in other fields of medicine.After the first studies that led to the identification of selected VOCs for pathophysiological purposes,subsequent research has progressively turned towards the comprehensive assessment of exhaled breath for potential clinical application.Specific VOC patterns were found to discriminate subjects with liver cirrhosis,to rate disease severity,and,eventually,to forecast adverse clinical outcomes even beyond existing scores.Preliminary results suggest that breath analysis could be useful also for detecting and staging hepatic encephalopathy and for predicting steatohepatitis in patients with nonalcoholic fatty liver disease.However,clinical translation is still hampered by a number of methodological limitations,including the lack of standardization and the consequent poor comparability between studies and the absence of external validation of obtained results.Given the low-cost and easy execution at bedside of the new technologies(e-nose),larger and well-structured studies are expected in order to provide the adequate level of evidence to support VOC analysis in clinical practice.展开更多
Non-alcoholic fatty liver disease(NAFLD) has a prevalence of approximately 30% in western countries, and is emerging as the first cause of liver cirrhosis and hepatocellular carcinoma(HCC). Therefore, risk stratificat...Non-alcoholic fatty liver disease(NAFLD) has a prevalence of approximately 30% in western countries, and is emerging as the first cause of liver cirrhosis and hepatocellular carcinoma(HCC). Therefore, risk stratification emerges as fundamental in order to optimize human and economic resources, and genetics displays intrinsic characteristics suitable to fulfill this task. According to the available data, heritability estimates for hepatic fat content range from 20% to 70%, and an almost 80% of shared heritability has been found between hepatic fat content and fibrosis. The rs738409 single nucleotide polymorphism(SNP) in patatin-like phospholipase domain-containing protein 3 gene and the rs58542926 SNP in transmembrane 6 superfamily member 2 gene have been robustly associated with NAFLD and with its progression, but promising results have been obtained with many other SNPs. Moreover, there has been proof of the additive role of the different SNPs in determining liver damage, and there have been preliminary experiences in which risk scores created through a few genetic variants, alone or in combination with clinical variables, were associated with a strongly potentiated risk of NAFLD, non-alcoholic steatohepatitis(NASH), NASH fibrosis or NAFLD-HCC. However, to date, clinical translation of genetics in the field of NAFLD has been poor or absent. Fortunately, the research we have done seems to have placed us on the right path: We should rely on longitudinal rather than on cross-sectional studies; we should focus on relevant outcomes rather than on simple liver fat accumulation; and we should put together the genetic and clinical information. The hope is that combined genetic/clinical scores, derived from longitudinal studies and built on a few strong genetic variants and relevant clinical variables, will reach a significant predictive power, such as to have clinical utility for risk stratification at the single patient level and even to esteem the impact of intervention on the risk of disease-related outcomes. Well-structured future studies would demonstrate if this vision can become a reality.展开更多
Post-procedural strokes have been observed in 0.5-2.7% of patients after carotid endarterectomy (CEA). They are frequently due to carotid embolism or thrombosis of the operated artery. lntracerebral haemorrhages and...Post-procedural strokes have been observed in 0.5-2.7% of patients after carotid endarterectomy (CEA). They are frequently due to carotid embolism or thrombosis of the operated artery. lntracerebral haemorrhages and technical difficulties are less common underlying factors.展开更多
文摘Liver disease is characterized by breath exhalation of peculiar volatile organic compounds(VOCs).Thanks to the availability of sensitive technologies for breath analysis,this empiric approach has recently gained increasing attention in the context of hepatology,following the good results obtained in other fields of medicine.After the first studies that led to the identification of selected VOCs for pathophysiological purposes,subsequent research has progressively turned towards the comprehensive assessment of exhaled breath for potential clinical application.Specific VOC patterns were found to discriminate subjects with liver cirrhosis,to rate disease severity,and,eventually,to forecast adverse clinical outcomes even beyond existing scores.Preliminary results suggest that breath analysis could be useful also for detecting and staging hepatic encephalopathy and for predicting steatohepatitis in patients with nonalcoholic fatty liver disease.However,clinical translation is still hampered by a number of methodological limitations,including the lack of standardization and the consequent poor comparability between studies and the absence of external validation of obtained results.Given the low-cost and easy execution at bedside of the new technologies(e-nose),larger and well-structured studies are expected in order to provide the adequate level of evidence to support VOC analysis in clinical practice.
文摘Non-alcoholic fatty liver disease(NAFLD) has a prevalence of approximately 30% in western countries, and is emerging as the first cause of liver cirrhosis and hepatocellular carcinoma(HCC). Therefore, risk stratification emerges as fundamental in order to optimize human and economic resources, and genetics displays intrinsic characteristics suitable to fulfill this task. According to the available data, heritability estimates for hepatic fat content range from 20% to 70%, and an almost 80% of shared heritability has been found between hepatic fat content and fibrosis. The rs738409 single nucleotide polymorphism(SNP) in patatin-like phospholipase domain-containing protein 3 gene and the rs58542926 SNP in transmembrane 6 superfamily member 2 gene have been robustly associated with NAFLD and with its progression, but promising results have been obtained with many other SNPs. Moreover, there has been proof of the additive role of the different SNPs in determining liver damage, and there have been preliminary experiences in which risk scores created through a few genetic variants, alone or in combination with clinical variables, were associated with a strongly potentiated risk of NAFLD, non-alcoholic steatohepatitis(NASH), NASH fibrosis or NAFLD-HCC. However, to date, clinical translation of genetics in the field of NAFLD has been poor or absent. Fortunately, the research we have done seems to have placed us on the right path: We should rely on longitudinal rather than on cross-sectional studies; we should focus on relevant outcomes rather than on simple liver fat accumulation; and we should put together the genetic and clinical information. The hope is that combined genetic/clinical scores, derived from longitudinal studies and built on a few strong genetic variants and relevant clinical variables, will reach a significant predictive power, such as to have clinical utility for risk stratification at the single patient level and even to esteem the impact of intervention on the risk of disease-related outcomes. Well-structured future studies would demonstrate if this vision can become a reality.
文摘Post-procedural strokes have been observed in 0.5-2.7% of patients after carotid endarterectomy (CEA). They are frequently due to carotid embolism or thrombosis of the operated artery. lntracerebral haemorrhages and technical difficulties are less common underlying factors.