A common design practice for dynamic loading assumes the frame fixed at their bases. In reality, the supporting soil medium allows movement to some extent due to its property to deform. This may decrease the overall s...A common design practice for dynamic loading assumes the frame fixed at their bases. In reality, the supporting soil medium allows movement to some extent due to its property to deform. This may decrease the overall stiffness of the structural system and may increase the natural period of the system. The effect of soil flexibility is suggested to be accounted through consideration of springs which have specified stiffness and soil half space. Results show that the dynamic response of frame structure to vibrations is due to applied dynamic load and is highly dependent on the soil type and the method of modeling soil structure interaction. The response of frame structure under dynamic load is higher in case of linear discrete independent spring as comparing with perfect bond cases. Except the response of frame in case of piles embedded in soft clay, half space are higher than frame with piles and linear elastic spring due to the interaction between the frequencies of applied load and frequencies of frame structure. Also, result showed that it is important to include the soil-structure interaction in the analysis of the system in order to correctly simulate the dynamic problem for controlling on the resonance phenomena.展开更多
文摘A common design practice for dynamic loading assumes the frame fixed at their bases. In reality, the supporting soil medium allows movement to some extent due to its property to deform. This may decrease the overall stiffness of the structural system and may increase the natural period of the system. The effect of soil flexibility is suggested to be accounted through consideration of springs which have specified stiffness and soil half space. Results show that the dynamic response of frame structure to vibrations is due to applied dynamic load and is highly dependent on the soil type and the method of modeling soil structure interaction. The response of frame structure under dynamic load is higher in case of linear discrete independent spring as comparing with perfect bond cases. Except the response of frame in case of piles embedded in soft clay, half space are higher than frame with piles and linear elastic spring due to the interaction between the frequencies of applied load and frequencies of frame structure. Also, result showed that it is important to include the soil-structure interaction in the analysis of the system in order to correctly simulate the dynamic problem for controlling on the resonance phenomena.