期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An overview of studies of observed climate change in the Hindu Kush Himalayan (HKH) region 被引量:4
1
作者 YOU Qing-Long REN Guo-Yu +5 位作者 ZHANG Yu-Qing REN Yu-Yu SUN Xiu-Bao ZHAN Yun-Jian Arun Bhakta SHRESTHA raghavan krishnan 《Advances in Climate Change Research》 SCIE CSCD 2017年第3期141-147,共7页
The Hindu Kush Himalayan (HKH hereafter) region is characterized by mountainous environments and a variety of regional climatic conditions. High-altitude regions in the HKH have the recent warming amplifications, espe... The Hindu Kush Himalayan (HKH hereafter) region is characterized by mountainous environments and a variety of regional climatic conditions. High-altitude regions in the HKH have the recent warming amplifications, especially during the global warming hiatus period. The rapid warming cause solid state water (snow, ice, glacier, and permafrost) to shrink, leading to increase in meltwater and there have been found more frequent incidences of flash floods, landslides, livestock diseases, and other disasters in the HKH region. Increasing awareness of climate change over the HKH region is reached a consensus. Meanwhile, the HKH region is often referred to as the water towers of Asia as many highaltitude regions store its water in the form of snow and/or glacier, feeding ten major large rivers in Asia. Therefore, the impacts of climate change on water availability in these river basins have huge influences on the livelihood of large number of population, especially in downstream regions. However, the scarcity of basic hydro-meteorological observations particularly in high-altitude regions of HKH limits rigorous analysis of climate change. Most studies used reanalysis data and/or model-reconstructed products to explore the spatial and temporal characteristics of hydro-meteorological processes, especially for extreme events. In this study, we review recent climate change in the HKH region, and the scientific challenges and research recommendations are suggested for this high-altitude area. 展开更多
关键词 Climate change HINDU Kush HIMALAYAN TIBETAN PLATEAU HYDROLOGICAL cycles
下载PDF
Downscaled climate change projections for the Hindu Kush Himalayan region using CORDEX South Asia regional climate models 被引量:3
2
作者 Jayanarayanan SANJAY raghavan krishnan +2 位作者 Arun Bhakta SHRESTHA Rupak RAJBHANDARI REN Guo-Yu 《Advances in Climate Change Research》 SCIE CSCD 2017年第3期185-198,共14页
This study assessed the regional climate models (RCMs) employed in the Coordinated Regional climate Downscaling Experiment (CORDEX) South Asia framework to investigate the qualitative aspects of future change in seaso... This study assessed the regional climate models (RCMs) employed in the Coordinated Regional climate Downscaling Experiment (CORDEX) South Asia framework to investigate the qualitative aspects of future change in seasonal mean near surface air temperature and precipitation over the Hindu Kush Himalayan (HKH) region. These RCMs downscaled a subset of atmosphere ocean coupled global climate models (AOGCMs) in the Coupled Model Intercomparison Project phase 5 (CMIP5) to higher 50 km spatial resolution over a large domain covering South Asia for two representation concentration pathways (RCP4.5 and RCP8.5) future scenarios. The analysis specifically examined and evaluated multi-model and multi-scenario climate change projections over the hilly sub-regions within HKH for the near-future (2036e2065) and far-future (2066e2095) periods. The downscaled multi-RCMs provide relatively better confidence than their driving AOGCMs in projecting the magnitude of seasonal warming for the hilly sub-region within the Karakoram and northwestern Himalaya, with higher projected change of 5.4 C during winter than of 4.9 C during summer monsoon season by the end of 21st century under the high-end emissions (RCP8.5) scenario. There is less agreement among these RCMs on the magnitude of the projected warming over the other sub-regions within HKH for both seasons, particularly associated with higher RCM uncertainty for the hilly sub-region within the central Himalaya. The downscaled multi-RCMs show good consensus and low RCM uncertainty in projecting that the summer monsoon precipitation will intensify by about 22% in the hilly subregion within the southeastern Himalaya and Tibetan Plateau for the far-future period under the RCP8.5 scenario. There is low confidence in the projected changes in the summer monsoon and winter season precipitation over the central Himalaya and in the Karakoram and northwestern Himalaya due to poor consensus and moderate to high RCM uncertainty among the downscaled multi-RCMs. Finally, the RCM related uncertainty is found to be large for the projected changes in seasonal temperature and precipitation over the hilly sub-regions within HKH by the end of this century, suggesting that improving the regional processes and feedbacks in RCMs are essential for narrowing the uncertainty, and for providing more reliable regional climate change projections suitable for impact assessments in HKH region. 展开更多
关键词 CMIP5 CORDEX SOUTH ASIA REGIONAL CLIMATE models HINDU Kush HIMALAYAN CLIMATE change projections
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部