Most forest chips are delivered to large-sized, combined heat and power plants in Finland. In this study, we introduce and demonstrate the small-scale delivery of forest wood chips to potential clients, with the wood ...Most forest chips are delivered to large-sized, combined heat and power plants in Finland. In this study, we introduce and demonstrate the small-scale delivery of forest wood chips to potential clients, with the wood chips being delivered in a container truck and pneumatically blown into a storage facility. This arrangement of wood chips being blown through a pipe into a storage eliminates the ground handling while requiring a relatively small space. In the demonstration tests, we tested the volumetric flow of biomass in the hose and its noise level while the blower was blowing the material and the flow speed of the material in the hose. This study discusses the test conditions in which the compatibility and suitability of the truck and its hydraulic system were used in conventional chip delivery in Finland and the selected blower type was investigated. According to the results, the biomass volume flow was higher (~0.46 m3/min) when the blower revolution was lower (2392 - 2566 RPM). However, when the RPM was increased to ~3000, the volumetric flow decreased to ~0.24 m3/min. Similarly, the speed of the chips was higher with a lower RPM;29.9 m/s at an RPM of 2400 and 25 m/s at an RPM of 2700. This is potentially due to both the blower and screw conveyer using the same power source. Additional optimization research would be needed to conclusively state the root cause of this phenomenon. On the other hand, chips from pruned stems had better flow than the chips from whole trees, since chips from whole tree have a wider range of chips sizes, including 1.3% of chips being in the range of 31.5 - 40 mm. The larger chips clogged the hose, which hindered the flow. Finally, the noise tests showed that it was louder at 0 degrees, which contrasted with the situation for the blower, with an aside at 90 degrees.展开更多
The aim of this paper was to compare the annual economic impact of a large-scale bio-coal pellet plant by raw material specifically for the Finnish Lakeland region. In this study, the total production volume of the th...The aim of this paper was to compare the annual economic impact of a large-scale bio-coal pellet plant by raw material specifically for the Finnish Lakeland region. In this study, the total production volume of the theoretical plant was 200,000 tons per year and the raw wood materials used were birch pulpwood, spruce pulpwood, pine pulpwood, and energy wood. These wood materials were young delimbed wood from early thinnings. The main goal of the paper was to illustrate that the energy content differences of raw wood materials affect the economic profitability of a bio-coal pellet plant at regional level. In this case, wood type also has a regional economic impact, which the pellet plant can influence through its raw wood material choices. The raw material comparison was based on measured data and not computational or literary data alone. The study found that lower solid wood energy densities caused higher relative costs for the total supply chain. A parallel phenomenon occurred with the required gross margin of the pellets, where lower energy content caused higher required gross margin for pellet sales. The gross margin was also sensitivity analyzed at different discount rates from 5% to 20%. At each required discount rate, the highest annual economic impact on the region was found for birch pellets, with values of 36.95 - 42.66 million €. Spruce pellets had the smallest annual economic impact, although it had the highest final pellet price in the same cases. The different economic effects were caused by the energy volumes sold.展开更多
Thermal treatment of biomass has been attracting attention for a decade or so, especially torrefaction. However, for the past few years, wet pyrolysis, also known as hydrothermal carbonization (HTC), has been getting ...Thermal treatment of biomass has been attracting attention for a decade or so, especially torrefaction. However, for the past few years, wet pyrolysis, also known as hydrothermal carbonization (HTC), has been getting some attention. Hydrothermal carbonization is a thermal treatment of biomass in the presence of water in a temperature range of 180°C - 260°C. This method of treating biomass has some benefits which others do not, such as it can handle extremely wet biomass. However, treating biomass may not be enough for practical use. It may need to be transported and stored. Thus, this study explored the idea of pelletizing the HTC biomass. The mechanical strength of the HTC pellets was found to be 93%, whereas, higher heating value (HHV) (dry basis) was found to be 4% higher than the corresponding white pellets. The initial results with some limited parameters indicated that it would be possible to pelletize without binder. However, extensive research on energy balance and economic assessment would be necessary to achieve economic feasibility.展开更多
文摘Most forest chips are delivered to large-sized, combined heat and power plants in Finland. In this study, we introduce and demonstrate the small-scale delivery of forest wood chips to potential clients, with the wood chips being delivered in a container truck and pneumatically blown into a storage facility. This arrangement of wood chips being blown through a pipe into a storage eliminates the ground handling while requiring a relatively small space. In the demonstration tests, we tested the volumetric flow of biomass in the hose and its noise level while the blower was blowing the material and the flow speed of the material in the hose. This study discusses the test conditions in which the compatibility and suitability of the truck and its hydraulic system were used in conventional chip delivery in Finland and the selected blower type was investigated. According to the results, the biomass volume flow was higher (~0.46 m3/min) when the blower revolution was lower (2392 - 2566 RPM). However, when the RPM was increased to ~3000, the volumetric flow decreased to ~0.24 m3/min. Similarly, the speed of the chips was higher with a lower RPM;29.9 m/s at an RPM of 2400 and 25 m/s at an RPM of 2700. This is potentially due to both the blower and screw conveyer using the same power source. Additional optimization research would be needed to conclusively state the root cause of this phenomenon. On the other hand, chips from pruned stems had better flow than the chips from whole trees, since chips from whole tree have a wider range of chips sizes, including 1.3% of chips being in the range of 31.5 - 40 mm. The larger chips clogged the hose, which hindered the flow. Finally, the noise tests showed that it was louder at 0 degrees, which contrasted with the situation for the blower, with an aside at 90 degrees.
基金the Auramo Foundation for funding that made this study possible.
文摘The aim of this paper was to compare the annual economic impact of a large-scale bio-coal pellet plant by raw material specifically for the Finnish Lakeland region. In this study, the total production volume of the theoretical plant was 200,000 tons per year and the raw wood materials used were birch pulpwood, spruce pulpwood, pine pulpwood, and energy wood. These wood materials were young delimbed wood from early thinnings. The main goal of the paper was to illustrate that the energy content differences of raw wood materials affect the economic profitability of a bio-coal pellet plant at regional level. In this case, wood type also has a regional economic impact, which the pellet plant can influence through its raw wood material choices. The raw material comparison was based on measured data and not computational or literary data alone. The study found that lower solid wood energy densities caused higher relative costs for the total supply chain. A parallel phenomenon occurred with the required gross margin of the pellets, where lower energy content caused higher required gross margin for pellet sales. The gross margin was also sensitivity analyzed at different discount rates from 5% to 20%. At each required discount rate, the highest annual economic impact on the region was found for birch pellets, with values of 36.95 - 42.66 million €. Spruce pellets had the smallest annual economic impact, although it had the highest final pellet price in the same cases. The different economic effects were caused by the energy volumes sold.
文摘Thermal treatment of biomass has been attracting attention for a decade or so, especially torrefaction. However, for the past few years, wet pyrolysis, also known as hydrothermal carbonization (HTC), has been getting some attention. Hydrothermal carbonization is a thermal treatment of biomass in the presence of water in a temperature range of 180°C - 260°C. This method of treating biomass has some benefits which others do not, such as it can handle extremely wet biomass. However, treating biomass may not be enough for practical use. It may need to be transported and stored. Thus, this study explored the idea of pelletizing the HTC biomass. The mechanical strength of the HTC pellets was found to be 93%, whereas, higher heating value (HHV) (dry basis) was found to be 4% higher than the corresponding white pellets. The initial results with some limited parameters indicated that it would be possible to pelletize without binder. However, extensive research on energy balance and economic assessment would be necessary to achieve economic feasibility.