期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Penalized Flexible Bayesian Quantile Regression 被引量:1
1
作者 Ali Alkenani rahim alhamzawi Keming Yu 《Applied Mathematics》 2012年第12期2155-2168,共14页
The selection of predictors plays a crucial role in building a multiple regression model. Indeed, the choice of a suitable subset of predictors can help to improve prediction accuracy and interpretation. In this paper... The selection of predictors plays a crucial role in building a multiple regression model. Indeed, the choice of a suitable subset of predictors can help to improve prediction accuracy and interpretation. In this paper, we propose a flexible Bayesian Lasso and adaptive Lasso quantile regression by introducing a hierarchical model framework approach to enable exact inference and shrinkage of an unimportant coefficient to zero. The error distribution is assumed to be an infinite mixture of Gaussian densities. We have theoretically investigated and numerically compared our proposed methods with Flexible Bayesian quantile regression (FBQR), Lasso quantile regression (LQR) and quantile regression (QR) methods. Simulations and real data studies are conducted under different settings to assess the performance of the proposed methods. The proposed methods perform well in comparison to the other methods in terms of median mean squared error, mean and variance of the absolute correlation criterions. We believe that the proposed methods are useful practically. 展开更多
关键词 Adaptive Lasso Lasso MIXTURE of GAUSSIAN DENSITIES Prior Distribution QUANTILE Regression
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部