期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于3DSEU-Net不确定性循环焦点平均教师的半监督脑肿瘤分割
1
作者 段逸凡 肖洪兵 rahman md mostafizur 《中国医学物理学杂志》 CSCD 2023年第9期1121-1126,共6页
准确、完整地定位和分割脑肿瘤对脑胶质瘤患者的存活率以及治疗方案的确定起着决定性作用。在三维核磁共振影像(MRI)中,生成准确的注释需要大量的专业知识和时间成本,使用少量有标签数据与大量无标签数据进行半监督学习更加符合实际的... 准确、完整地定位和分割脑肿瘤对脑胶质瘤患者的存活率以及治疗方案的确定起着决定性作用。在三维核磁共振影像(MRI)中,生成准确的注释需要大量的专业知识和时间成本,使用少量有标签数据与大量无标签数据进行半监督学习更加符合实际的临床场景与需求。为此,本文提出一种3DSEU-Net作为半监督模型中的教师与学生网络,该网络引入注意力计算,同时结合跳跃连接,以便获取三维医学影像中更加丰富鲁棒的结构与细节特征,训练过程中,教师模型通过不确定性量化,然后指导学生模型,使学生模型学习到置信度更高的结果,在仅有少量有标签数据的情况下学习到更多的知识,以提升模型的脑肿瘤分割精度。在仅有25个有标签数据的情况下,分割精度比全监督学习提升了12.9%,最高分割精度达81.41%,优于目前可同基准复现的6种半监督方法,证明了本文方法的可行性和有效性。 展开更多
关键词 三维卷积神经网络 通道注意力 半监督学习 脑肿瘤分割 循环焦点损失
下载PDF
基于三维UNet与混合焦点损失函数的脑肿瘤全自动分割算法
2
作者 田恒屹 肖洪兵 +1 位作者 计亚荣 rahman md mostafizur 《中国医学物理学杂志》 CSCD 2023年第9期1114-1120,共7页
针对脑肿瘤分割方法中由于正常脑组织、脑肿瘤等不同类别的数据量严重不平衡,导致分割精度受到极大影响的问题,提出一种结合混合焦点损失函数与三维UNet(3D UNet)的全自动脑肿瘤分割算法。在3D UNet模型框架中,使用包含焦点损失与改进... 针对脑肿瘤分割方法中由于正常脑组织、脑肿瘤等不同类别的数据量严重不平衡,导致分割精度受到极大影响的问题,提出一种结合混合焦点损失函数与三维UNet(3D UNet)的全自动脑肿瘤分割算法。在3D UNet模型框架中,使用包含焦点损失与改进的焦点Tversky损失的混合损失函数,两种损失函数可以优势互补,分别缓解输入与输出数据类不平衡带来的不利影响,使分割模型聚焦在难以分类和学习的样本上。利用公开的脑肿瘤数据集进行相关实验,提出的混合焦点损失函数分割模型在完整肿瘤区域、核心肿瘤区域(TC)和增强肿瘤区域(ET)的Dice均值分别可达89.01%、88.67%与83.74%,豪斯多夫距离均值分别为14.29、5.01与3.84 mm,实验结果表明,基于混合损失函数的深度学习分割模型可以显著提升由于数据类不平衡导致的难以分类区域(TC和ET)的分割效果。 展开更多
关键词 脑肿瘤 深度学习 3D UNet 混合焦点损失函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部