Graphene nanoplatelets (GNPs) were used as multifunctional nanofiller to enhance thermal and mechanical properties as well as electrical conductivity of two different biodegradable thermoplastics: poly lactide (PL...Graphene nanoplatelets (GNPs) were used as multifunctional nanofiller to enhance thermal and mechanical properties as well as electrical conductivity of two different biodegradable thermoplastics: poly lactide (PLA) and poly (butylene adipate-co-terephthalate) (PBAT). Morphological investigations showed different levels of GNP dispersion in the two matrices, and consequently physical properties of the two systems exhibited dissimilar behaviours with GNP incorporation. Crystallinity of PLA, determined from differential scanning calorimetry, was observed to increase markedly with addition of GNPs in contrast to the decrease in crystallinity of PBAT. Isothermal and non-isothermal thermogravimetric analyses also revealed a more significant delay in thermal decomposition of PLA upon addition of GNPs compared to that of PBAT. Furthermore, results showed that increasing GNP content of PLA and PBAT nanocomposites influenced their Young's modulus and electrical conductivity in different ways. Modulus of PBAT increased continuously with increasing GNP loading while that of PLA reached a maximum at 9wt% GNPs and then decreased. Moreover, despite the higher conductivity of pure PBAT compared to pure PLA, conductivity of PLA/GNP nanocomposites overtook that of PBATIGNP nanocomposites above a certain GNP concentration. This demonstrated the determining effect of nanoplatelets dispersion state on the matrices properties.展开更多
基金the support received from the Australian Government through a Research Training Program(RTP)Scholarshipthe support received from the School of Engineering,RMIT Universitythe support received from the Australian Research Council(ARC)Research Hub for Future Fibres(IH140100018)funded by the Australian Government
文摘Graphene nanoplatelets (GNPs) were used as multifunctional nanofiller to enhance thermal and mechanical properties as well as electrical conductivity of two different biodegradable thermoplastics: poly lactide (PLA) and poly (butylene adipate-co-terephthalate) (PBAT). Morphological investigations showed different levels of GNP dispersion in the two matrices, and consequently physical properties of the two systems exhibited dissimilar behaviours with GNP incorporation. Crystallinity of PLA, determined from differential scanning calorimetry, was observed to increase markedly with addition of GNPs in contrast to the decrease in crystallinity of PBAT. Isothermal and non-isothermal thermogravimetric analyses also revealed a more significant delay in thermal decomposition of PLA upon addition of GNPs compared to that of PBAT. Furthermore, results showed that increasing GNP content of PLA and PBAT nanocomposites influenced their Young's modulus and electrical conductivity in different ways. Modulus of PBAT increased continuously with increasing GNP loading while that of PLA reached a maximum at 9wt% GNPs and then decreased. Moreover, despite the higher conductivity of pure PBAT compared to pure PLA, conductivity of PLA/GNP nanocomposites overtook that of PBATIGNP nanocomposites above a certain GNP concentration. This demonstrated the determining effect of nanoplatelets dispersion state on the matrices properties.