The Paleoproterozoic evolution of Fennoscandia and Greenland can be divided into major rifting and orogenic stages. The Paleoproterozoic rifting of Fennoscandia started with 2.505-2.1 Ga, multiphase, southwest-prograd...The Paleoproterozoic evolution of Fennoscandia and Greenland can be divided into major rifting and orogenic stages. The Paleoproterozoic rifting of Fennoscandia started with 2.505-2.1 Ga, multiphase, southwest-prograding, intraplate rifting. Both Fennoscandia and Greenland experienced 2.1- 2.04 Ga drifting and separation of their Archean cratons by newly-formed oceans. The main Paleoproterozoic orogenic evolution of Fennoscandia resulted in the Lapland-Kola orogen (1.94-1.86 Ga) and the composite Svecofennian orogen (1.92-1.79 Ga). The Paleoproterozoic orogens in Greenland, from north to south, are the lnglefield mobile belt (1.95-1.92 Ga), the Rinkian .fold belt/Nagssugtoqidian orogen (1.88-1.83 Ga) and the Ketilidian orogen (c. 1.8 Ga). The Lapland-Kola orogen, Inglefield mobile belt and the Rinkian fold belt/Nagssugtoqidian orogen are continent-continent collision zones with limited formation of new Paleoproterozoic crust, whereas the Ketilidian orogen displays a convergent plate-tectonic system, without subsequent collision. The composite Svecofennian orogen is responsible for the main Paleoproterozoic crustal growth of Fennoscandia.展开更多
Geology has been of profound importance for the Nordic countries since the Middle Ages. Strong economies were built on an understanding of the occurrence in bedrock of minerals containing metals, e.g., silver, copper,...Geology has been of profound importance for the Nordic countries since the Middle Ages. Strong economies were built on an understanding of the occurrence in bedrock of minerals containing metals, e.g., silver, copper, zinc and iron, and eventually led to the establishment of the first Geological Surveys in Norway and Sweden in the middle of the nineteenth century. The geology of Norden ranges from the oldest to youngest rocks on the planet. Based on the papers in this special issue, this introduction provides a brief summary of the geological evolution of Norden, from the Archean of Greenland and northern Fennoscandia to the on-going volcanicity in Iceland on the MidAtlantic Ridge. It also refers to aspects of Geoscience that are particularly important for society in Norden, including geo-resources (petroleum, geothermal energy, nuclear energy, metals, industrial minerals and groundwater) and environmental geology (including natural and anthropogenic processes, medical geology, geo-hazards and climate). Information on the early history of geology in Norden and the geological surveys is also included and, finally, an outline of the 33rd International Geological Congress with its main theme “Earth System Science: Foundation for Sustainable Development”.展开更多
文摘The Paleoproterozoic evolution of Fennoscandia and Greenland can be divided into major rifting and orogenic stages. The Paleoproterozoic rifting of Fennoscandia started with 2.505-2.1 Ga, multiphase, southwest-prograding, intraplate rifting. Both Fennoscandia and Greenland experienced 2.1- 2.04 Ga drifting and separation of their Archean cratons by newly-formed oceans. The main Paleoproterozoic orogenic evolution of Fennoscandia resulted in the Lapland-Kola orogen (1.94-1.86 Ga) and the composite Svecofennian orogen (1.92-1.79 Ga). The Paleoproterozoic orogens in Greenland, from north to south, are the lnglefield mobile belt (1.95-1.92 Ga), the Rinkian .fold belt/Nagssugtoqidian orogen (1.88-1.83 Ga) and the Ketilidian orogen (c. 1.8 Ga). The Lapland-Kola orogen, Inglefield mobile belt and the Rinkian fold belt/Nagssugtoqidian orogen are continent-continent collision zones with limited formation of new Paleoproterozoic crust, whereas the Ketilidian orogen displays a convergent plate-tectonic system, without subsequent collision. The composite Svecofennian orogen is responsible for the main Paleoproterozoic crustal growth of Fennoscandia.
文摘Geology has been of profound importance for the Nordic countries since the Middle Ages. Strong economies were built on an understanding of the occurrence in bedrock of minerals containing metals, e.g., silver, copper, zinc and iron, and eventually led to the establishment of the first Geological Surveys in Norway and Sweden in the middle of the nineteenth century. The geology of Norden ranges from the oldest to youngest rocks on the planet. Based on the papers in this special issue, this introduction provides a brief summary of the geological evolution of Norden, from the Archean of Greenland and northern Fennoscandia to the on-going volcanicity in Iceland on the MidAtlantic Ridge. It also refers to aspects of Geoscience that are particularly important for society in Norden, including geo-resources (petroleum, geothermal energy, nuclear energy, metals, industrial minerals and groundwater) and environmental geology (including natural and anthropogenic processes, medical geology, geo-hazards and climate). Information on the early history of geology in Norden and the geological surveys is also included and, finally, an outline of the 33rd International Geological Congress with its main theme “Earth System Science: Foundation for Sustainable Development”.