期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Mesoporous cadmium bismuth niobate(CdBi2Nb2O9)nanospheres for hydrogen generation under visible light 被引量:1
1
作者 Aniruddha K.Kulkarni Yogesh A.Sethi +5 位作者 rajendra p.panmand Latesh K.Nikam Jin-Ook Baeg N.R.Munirathnam Anil V.Ghule Bharat B.Kale 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第3期433-439,共7页
Herein, we report visible light active mesoporous cadmium bismuth niobate(CBN) nanospheres as a photocatalyst for hydrogen(H) generation from copious hydrogen sulfide(HS). CBN has been synthesized by solid state... Herein, we report visible light active mesoporous cadmium bismuth niobate(CBN) nanospheres as a photocatalyst for hydrogen(H) generation from copious hydrogen sulfide(HS). CBN has been synthesized by solid state reaction(SSR) and also using combustion method(CM) at relatively lower temperatures.The as-synthesized materials were characterized using different techniques. X-ray diffraction analysis shows the formation of single phase orthorhombic CBN. Field emission scanning electron microscopy and high resolution-transmission electron microscopy showed the particle size in the range of.5–1 μm for CBN obtained by SSR and 50–70 nm size nanospheres using CM, respectively. Interestingly, nanospheres of size 50–70 nm self assembled with 5–7 nm nanoparticles were observed in case of CBN prepared by CM.The optical properties were studied using UV–visible diffuse reflectance spectroscopy and showed band gap around.0 eV for SSR and 3.1 eV for CM. The slight shift in band gap of CM is due to nanocrystalline nature of material. Considering the band gap in visible region, the photocatalytic activity of CBN for hydrogen production from HS has been performed under visible light. CBN prepared by CM has shown utmost hydrogen evolution i.e. 6912 μmol/h/0.5 g which is much higher than CBN prepared using SSR.The enhanced photocatalytic property can be attributed to the smaller particle size, crystalline nature,high surface area and mesoporous structure of CBN prepared by combustion method. The catalyst was found to be stable, active and can be utilized for water splitting. 展开更多
关键词 PHOTOCATALYSIS CdBi2Nb2O9 Hydrogen generation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部