Marine ecological niches have recently been described as "particularly promising" sources for search of new antimicrobials to combat antibiotic-resistant strains of pathogenic microorganisms. Marine organism...Marine ecological niches have recently been described as "particularly promising" sources for search of new antimicrobials to combat antibiotic-resistant strains of pathogenic microorganisms. Marine organisms are excellent sources for many industrial products, but they are partly explored. Over 30 000 compounds have been isolated from marine sources. Bacteria, fungi, and cyanobacteria obtained from various marine sources secret several industrially useful bioactive compounds, possessing antibacterial, antifungal, and antimycobacterial activities. Sustainable cultivation methods for promising marine organisms and biotechnological processes for selected compounds can be developed, along with the establishment of biosensors for monitoring the target compounds. The semisynthetic modifications of marine-based bioactive compounds produce their new derivatives, structural analogs and mimetics that could serve as novel lead compounds against resistant pathogens. The present review focuses on promising antimicrobial compounds isolated from marine microbes from 1991-2013.展开更多
基金supported by All India Council for Technical Education(AICTE)(Ref:20/AICTE/RIFD/RPS(Policy-III)62/2012-13)
文摘Marine ecological niches have recently been described as "particularly promising" sources for search of new antimicrobials to combat antibiotic-resistant strains of pathogenic microorganisms. Marine organisms are excellent sources for many industrial products, but they are partly explored. Over 30 000 compounds have been isolated from marine sources. Bacteria, fungi, and cyanobacteria obtained from various marine sources secret several industrially useful bioactive compounds, possessing antibacterial, antifungal, and antimycobacterial activities. Sustainable cultivation methods for promising marine organisms and biotechnological processes for selected compounds can be developed, along with the establishment of biosensors for monitoring the target compounds. The semisynthetic modifications of marine-based bioactive compounds produce their new derivatives, structural analogs and mimetics that could serve as novel lead compounds against resistant pathogens. The present review focuses on promising antimicrobial compounds isolated from marine microbes from 1991-2013.