期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Co-Occurrence Histogram Based Ensemble of Classifiers for Classification of Cervical Cancer Cells
1
作者 rajesh yakkundimath Varsha Jadhav +1 位作者 Basavaraj Anami Naveen Malvade 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第3期270-281,共12页
To explore the potential of conventional image processing techniques in the classification of cervical cancer cells, in this work, a co-occurrence histogram method was employed for image feature extraction and an ense... To explore the potential of conventional image processing techniques in the classification of cervical cancer cells, in this work, a co-occurrence histogram method was employed for image feature extraction and an ensemble classifier was developed by combining the base classifiers, namely, the artificial neural network(ANN),random forest(RF), and support vector machine(SVM), for image classification. The segmented pap-smear cell image dataset was constructed by the k-means clustering technique and used to evaluate the performance of the ensemble classifier which was formed by the combination of above considered base classifiers. The result was also compared with that achieved by the individual base classifiers as well as that trained with color, texture, and shape features. The maximum average classification accuracy of 93.44% was obtained when the ensemble classifier was applied and trained with co-occurrence histogram features, which indicates that the ensemble classifier trained with co-occurrence histogram features is more suitable and advantageous for the classification of cervical cancer cells. 展开更多
关键词 Cervical cancer co-occurrence histogram ensemble classification k-means clustering
下载PDF
A comparative analysis of paddy crop biotic stress classification using pre-trained deep neural networks 被引量:1
2
作者 Naveen N.Malvade rajesh yakkundimath +2 位作者 Girish Saunshi Mahantesh C.Elemmi Parashuram Baraki 《Artificial Intelligence in Agriculture》 2022年第1期167-175,共9页
The agriculture sector is no exception to the widespread usage of deep learning tools and techniques.In this paper,an automated detection method on the basis of pre-trained Convolutional Neural Network(CNN)models is p... The agriculture sector is no exception to the widespread usage of deep learning tools and techniques.In this paper,an automated detection method on the basis of pre-trained Convolutional Neural Network(CNN)models is proposed to identify and classify paddy crop biotic stresses from the field images.The proposed work also provides the empirical comparison among the leading CNN models with transfer learning from the ImageNet weights namely,Inception-V3,VGG-16,ResNet-50,DenseNet-121 and MobileNet-28.Brown spot,hispa,and leaf blast,three of the most common and destructive paddy crop biotic stresses that occur during the flowering and ripening growth stages are considered for the experimentation.The experimental results reveal that the ResNet-50 model achieves the highest average paddy crop stress classification accuracy of 92.61%outperforming the other considered CNN models.The study explores the feasibility of CNN models for the paddy crop stress identification as well as the applicability of automated methods to non-experts. 展开更多
关键词 Paddy crop Stress classification Biotic stress PlantVillage ImageNet Pre-trained CNN models
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部