Storage of potato tubers at low temperature affects their metabolism and may alter their phytochemical properties. There is a need to elucidate the changes in antioxidant compounds, activity and enzymes during storage...Storage of potato tubers at low temperature affects their metabolism and may alter their phytochemical properties. There is a need to elucidate the changes in antioxidant compounds, activity and enzymes during storage of tubers. Eleven Indian potato varieties were evaluated for antioxidant parameters, after 0, 30, 60 and 90 days of storage at room temperature, 15 °C and 4 °C. Total phenolics(0.0786–0.1546 mg gallic acid equivalents·g^(-1)FW) and vitamin C content(0.0828–0.2416 mg·g^(-1)FW) varied among the varieties and were different with storage temperature; their levels fluctuated during storage but remained above the initial level until the last day of observation. Phenolic acid profiling by UPLC identified 12 compounds among which the most abundant was chlorogenic acid followed by gallic acid, sinapic acid and ellagic acid. Except para-coumaric acid which decreased at 4 °C, all the phenolic acids increased with storage. Caffeic acid, chlorogenic acid, protocatechuic acid and gallic acid mostly correlated with total phenolic content(r = 0.456, 0.482, 0.588 and 0.620, respectively). Antioxidant activity against both DPPH and ABTS radicals increased during the initial days of storage and then dropped to a level comparable or lower than the original value,irrespective of the storage temperature. Correlation study revealed that chlorogenic acid, gallic acid and ferulic acid mostly contributed to antioxidant activity. Activity of both antioxidant enzymes, superoxide dismutase and ascorbate peroxidase, increased initially but then decreased to values lower than the initial level and were not influenced by storage temperature. Correlation with antioxidant activity indicated that the enhancement of reactive oxygen scavenging species in cold stored tubers could result mainly from ascorbate peroxidase activity. Our results demonstrate that storage temperature adversely influences the metabolism and the content of antioxidant compounds in potato tubers, with subsequent increase on their antioxidant capacity.展开更多
基金the African Union and the Government of India through the Indian Council of Agricultural Research (ICAR) for granting the Indo-Africa Scholarship, which financially supported this work
文摘Storage of potato tubers at low temperature affects their metabolism and may alter their phytochemical properties. There is a need to elucidate the changes in antioxidant compounds, activity and enzymes during storage of tubers. Eleven Indian potato varieties were evaluated for antioxidant parameters, after 0, 30, 60 and 90 days of storage at room temperature, 15 °C and 4 °C. Total phenolics(0.0786–0.1546 mg gallic acid equivalents·g^(-1)FW) and vitamin C content(0.0828–0.2416 mg·g^(-1)FW) varied among the varieties and were different with storage temperature; their levels fluctuated during storage but remained above the initial level until the last day of observation. Phenolic acid profiling by UPLC identified 12 compounds among which the most abundant was chlorogenic acid followed by gallic acid, sinapic acid and ellagic acid. Except para-coumaric acid which decreased at 4 °C, all the phenolic acids increased with storage. Caffeic acid, chlorogenic acid, protocatechuic acid and gallic acid mostly correlated with total phenolic content(r = 0.456, 0.482, 0.588 and 0.620, respectively). Antioxidant activity against both DPPH and ABTS radicals increased during the initial days of storage and then dropped to a level comparable or lower than the original value,irrespective of the storage temperature. Correlation study revealed that chlorogenic acid, gallic acid and ferulic acid mostly contributed to antioxidant activity. Activity of both antioxidant enzymes, superoxide dismutase and ascorbate peroxidase, increased initially but then decreased to values lower than the initial level and were not influenced by storage temperature. Correlation with antioxidant activity indicated that the enhancement of reactive oxygen scavenging species in cold stored tubers could result mainly from ascorbate peroxidase activity. Our results demonstrate that storage temperature adversely influences the metabolism and the content of antioxidant compounds in potato tubers, with subsequent increase on their antioxidant capacity.