Background: Forest management decisions are based on expectations of future developments. For sound decisions it is essential to accurately predict the expected values in future developments and to account for their i...Background: Forest management decisions are based on expectations of future developments. For sound decisions it is essential to accurately predict the expected values in future developments and to account for their inherent uncertainty,for example the impact of climate change on forests. Changing climatic conditions affect forest productivity and alter the risk profile of forests and forest enterprises. Intensifying drought stress is seen as one major risk factor threatening forest management in the north German lowlands. Drought stress reduces tree growth and vitality and might even trigger mortality. But so far, it is not possible to quantify effects of a persistent dryer climate on forest productivity at a level suitable for forest management.Methods: We apply a well-established single-tree forest growth simulator to quantify the effect of persistent dryer climates on future forest productivity. We analyse the growth of Scots pine(Pinus sylvestris L.), European beech(Fagus sylvatico L.) and oak(Quercus robur L. and Quercus petraea(Matt.) Liebl.) in two forest regions in the north German lowlands for a time interval of 60 years until 2070. The growth response under three different climate projections is compared to a baseline scenario.Results: The results show clear differences in volume increment to persistent dryer climates between tree species. The findings exhibit regional differences and temporal trends. While mean annual increment at biological rotation age of Scots pine and oak predominantly benefits from the projected climate conditions until 2070, beech might suffer losses of up to 3 m^3·ha^(-1)yr^(-1) depending on climate scenario and region. However, in the projection period2051 to 2070 the uncertainty ranges comprise positive as well as negative climatic effects for all species.Conclusions: The projected changes in forest growth serve as quantitative contributions to provide decision support in the evaluation of, for example, species future site suitability and timber supply assessments. The analysis of productivity changes under persistent dryer climate complements the drought vulnerability assessment which is applied in practical forestry in northwestern Germany today. The projected species' productivity has strong implications for forest management and the inherent uncertainty needs to be accounted for.展开更多
Background: Within the framework of close-to-nature forestry, oak forest(Quercus robur, Q. petraea) regeneration techniques that consider both silvicultural and nature conservation demands have become a very important...Background: Within the framework of close-to-nature forestry, oak forest(Quercus robur, Q. petraea) regeneration techniques that consider both silvicultural and nature conservation demands have become a very important issue.While there are many experimental and local studies that aim at disentangling the relationships between different environmental and silvicultural factors and the success of oak regeneration, systematic supra-regional studies at the greater landscape level are missing so far.Against this background, the first objective(a) of this study was to present an efficient and sufficiently accurate sampling scheme for supra-regional forest regrowth inventories, which we applied to young oaks stands. The second, and major, objective(b) was to identify the crucial success factors for high-quality oak forest regeneration in northwest Germany.Results: Objective(a): Factors that have been identified as potentially crucial for the success or failure of oak regeneration were either included in a field inventory procedure or extracted from forest inventory databases. We found that the collected data were suitable to be analyzed in a three-step success model, which was aimed at identifying the crucial success factors for high-quality oak forest regeneration.Objective(b): Our modeling procedure, which included a Bayesian estimation approach with spike-and-slab priors,revealed that competitive pressure from the secondary tree species was the most decisive success factor;no competition, or low competition by secondary tree species appeared to be particularly beneficial for the success of high-quality oak regeneration. Also fencing and the absence of competitive vegetation(weeds, grass, bracken)seemed to be beneficial factors for the success of oak regeneration.Conclusions: Trusting in biological automation was found to be mostly useless regarding economically viable oak forest regeneration. To efficiently organize oak regeneration planning and silvicultural decision-making within a forest enterprise, it is strongly recommended to initially evaluate the annual financial and personnel capacities for carrying out young growth tending or pre-commercial thinning and only then to decide on the extent of regenerated oak stands. Careful and adaptive regeneration planning is also indispensable to secure the long-term ecological continuity in oak forests. Oak regeneration should therefore preferably take place within the close vicinity of old oak stands or directly in them. The retention of habitat trees is urgently advised.展开更多
基金funded by the German Federal Ministry of Fducation and Research under research grant 033L029H and is part of the interdisciplinary research project"Sustainable land-use management in the North German lowlands"
文摘Background: Forest management decisions are based on expectations of future developments. For sound decisions it is essential to accurately predict the expected values in future developments and to account for their inherent uncertainty,for example the impact of climate change on forests. Changing climatic conditions affect forest productivity and alter the risk profile of forests and forest enterprises. Intensifying drought stress is seen as one major risk factor threatening forest management in the north German lowlands. Drought stress reduces tree growth and vitality and might even trigger mortality. But so far, it is not possible to quantify effects of a persistent dryer climate on forest productivity at a level suitable for forest management.Methods: We apply a well-established single-tree forest growth simulator to quantify the effect of persistent dryer climates on future forest productivity. We analyse the growth of Scots pine(Pinus sylvestris L.), European beech(Fagus sylvatico L.) and oak(Quercus robur L. and Quercus petraea(Matt.) Liebl.) in two forest regions in the north German lowlands for a time interval of 60 years until 2070. The growth response under three different climate projections is compared to a baseline scenario.Results: The results show clear differences in volume increment to persistent dryer climates between tree species. The findings exhibit regional differences and temporal trends. While mean annual increment at biological rotation age of Scots pine and oak predominantly benefits from the projected climate conditions until 2070, beech might suffer losses of up to 3 m^3·ha^(-1)yr^(-1) depending on climate scenario and region. However, in the projection period2051 to 2070 the uncertainty ranges comprise positive as well as negative climatic effects for all species.Conclusions: The projected changes in forest growth serve as quantitative contributions to provide decision support in the evaluation of, for example, species future site suitability and timber supply assessments. The analysis of productivity changes under persistent dryer climate complements the drought vulnerability assessment which is applied in practical forestry in northwestern Germany today. The projected species' productivity has strong implications for forest management and the inherent uncertainty needs to be accounted for.
基金the funding of the project “Quer Con–Longterm conservation of ecological continuity in oak forests”(Grant number32694)by the German Federal Environmental Foundation(DBU)
文摘Background: Within the framework of close-to-nature forestry, oak forest(Quercus robur, Q. petraea) regeneration techniques that consider both silvicultural and nature conservation demands have become a very important issue.While there are many experimental and local studies that aim at disentangling the relationships between different environmental and silvicultural factors and the success of oak regeneration, systematic supra-regional studies at the greater landscape level are missing so far.Against this background, the first objective(a) of this study was to present an efficient and sufficiently accurate sampling scheme for supra-regional forest regrowth inventories, which we applied to young oaks stands. The second, and major, objective(b) was to identify the crucial success factors for high-quality oak forest regeneration in northwest Germany.Results: Objective(a): Factors that have been identified as potentially crucial for the success or failure of oak regeneration were either included in a field inventory procedure or extracted from forest inventory databases. We found that the collected data were suitable to be analyzed in a three-step success model, which was aimed at identifying the crucial success factors for high-quality oak forest regeneration.Objective(b): Our modeling procedure, which included a Bayesian estimation approach with spike-and-slab priors,revealed that competitive pressure from the secondary tree species was the most decisive success factor;no competition, or low competition by secondary tree species appeared to be particularly beneficial for the success of high-quality oak regeneration. Also fencing and the absence of competitive vegetation(weeds, grass, bracken)seemed to be beneficial factors for the success of oak regeneration.Conclusions: Trusting in biological automation was found to be mostly useless regarding economically viable oak forest regeneration. To efficiently organize oak regeneration planning and silvicultural decision-making within a forest enterprise, it is strongly recommended to initially evaluate the annual financial and personnel capacities for carrying out young growth tending or pre-commercial thinning and only then to decide on the extent of regenerated oak stands. Careful and adaptive regeneration planning is also indispensable to secure the long-term ecological continuity in oak forests. Oak regeneration should therefore preferably take place within the close vicinity of old oak stands or directly in them. The retention of habitat trees is urgently advised.