期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Using Magnetic Barkhausen Noise Technology and Finite Element Method to Study the Condition of Continuous Welded Rails on the Darwin-Alice Springs Line
1
作者 ralph (wei) zhang Helen Wu 《Journal of Civil Engineering and Architecture》 2011年第7期596-605,共10页
The Magnetic Barkhausen Noise (MBN) technology is a non-destructive method to measure the neutral temperature of thc CWR track. A series of in-field verifications and data comparison on Australian mainline tracks ha... The Magnetic Barkhausen Noise (MBN) technology is a non-destructive method to measure the neutral temperature of thc CWR track. A series of in-field verifications and data comparison on Australian mainline tracks have shown the results from that system are highly accurate and reliable. The system can be an accuracy and cost-effective tool to prevent the potential buckling and break of CWR rails. The physical backgrounds and features of the system are represented in this paper. The Darwin-Alice Springs Line is a newly constructed main line in Australia which is linked from the north and middle of Australia. Originally, this rail line is designed and constructed in a "cost-effective" way to a lower price, and the key parameters are relatively low. To maintain the stability of the CWR tracks in a very harsh environment, some new technologies such as the MBN technology were utilised. From the results of neutral temperature, it is found that the majority of them are very high. Combined with the calculation and finite element analysis, these problems evidenced that it is caused by the low toe load fastening system and high sleeper spacing. After that some suggestions are given to improve the stability of the CWR on the railway line. 展开更多
关键词 Magnetic Barkhausen Noise finite element method CONDITION CWR track.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部