Dielectrophoresis(DEP)describes the motion of suspended objects when exposed to an inhomogeneous electric field.It has been successful as a method for parallel and site-selective assembling of nanotubes from a dispers...Dielectrophoresis(DEP)describes the motion of suspended objects when exposed to an inhomogeneous electric field.It has been successful as a method for parallel and site-selective assembling of nanotubes from a dispersion into a sophisticated device architecture.Researchers have conducted extensive works to understand the DEP of nanotubes in aqueous ionic surfactant solutions.However,only recently,DEP was applied to polymer-wrapped single-walled carbon nanotubes(SWCNTs)in organic solvents due to the availability of ultra-pure SWCNT content.In this paper,the focus is on the difference between the DEP in aqueous and organic solutions.It starts with an introduction into the DEP of carbon nanotubes(CNT-DEP)to provide a comprehensive,in-depth theoretical background before discussing in detail the experimental procedures and conditions.For academic interests,this work focuses on the CNT-DEP deposition scheme,discusses the importance of the electrical double layer,and employs finite element simulations to optimize CNT-DEP deposition condition with respect to the experimental observation.An important outcome is an understanding of why DEP in organic solvents allows for the deposition and alignment of SWCNTs in low-frequency and even static electric fields,and why the response of semiconducting SWCNTs(s-SWCNTs)is strongly enhanced in non-conducting,weakly polarizable media.Strategies to further improve CNT-DEP for s-SWCNT-relevant applications are given as well.Overall,this work should serve as a practical guideline to select the appropriate setting for effective CNT DEPs.展开更多
We introduce voltage-contrast scanning electron microscopy(VC-SEM)for visual characterization of the electronic properties of single-walled carbon nanotubes.VC-SEM involves tuning the electronic band structure and ima...We introduce voltage-contrast scanning electron microscopy(VC-SEM)for visual characterization of the electronic properties of single-walled carbon nanotubes.VC-SEM involves tuning the electronic band structure and imaging the potential profi le along the length of the nanotube.The resultant secondary electron contrast allows to distinguish between metallic and semiconducting carbon nanotubes and to follow the switching of semiconducting nanotube devices,as confi rmed by in situ electrical transport measurements.We demonstrate that high-density arrays of individual nanotube devices can be rapidly and simultaneously characterized.A leakage current model in combination with fi nite element simulations of the device electrostatics is presented in order to explain the observed contrast evolution of the nanotube and surface electrodes.This work serves to fi ll a void in electronic characterization of molecular device architectures.展开更多
The article"Principles of carbon nanotube dielectrophoresis" written by Wenshan Li,Frank Hennrich,Benjamin S.Flavel,Simone Dehm,Manfred Kappes,and Ralph Krupke,was erroneously originally published electronic...The article"Principles of carbon nanotube dielectrophoresis" written by Wenshan Li,Frank Hennrich,Benjamin S.Flavel,Simone Dehm,Manfred Kappes,and Ralph Krupke,was erroneously originally published electronically on the publisher internet portal(currently SpringerLink)without Open Access.展开更多
基金S.Flavel acknowledges support from the Deutsche Forschungsgemeinschafts Emmy Noether Program under grant number FL 834/1-1.
文摘Dielectrophoresis(DEP)describes the motion of suspended objects when exposed to an inhomogeneous electric field.It has been successful as a method for parallel and site-selective assembling of nanotubes from a dispersion into a sophisticated device architecture.Researchers have conducted extensive works to understand the DEP of nanotubes in aqueous ionic surfactant solutions.However,only recently,DEP was applied to polymer-wrapped single-walled carbon nanotubes(SWCNTs)in organic solvents due to the availability of ultra-pure SWCNT content.In this paper,the focus is on the difference between the DEP in aqueous and organic solutions.It starts with an introduction into the DEP of carbon nanotubes(CNT-DEP)to provide a comprehensive,in-depth theoretical background before discussing in detail the experimental procedures and conditions.For academic interests,this work focuses on the CNT-DEP deposition scheme,discusses the importance of the electrical double layer,and employs finite element simulations to optimize CNT-DEP deposition condition with respect to the experimental observation.An important outcome is an understanding of why DEP in organic solvents allows for the deposition and alignment of SWCNTs in low-frequency and even static electric fields,and why the response of semiconducting SWCNTs(s-SWCNTs)is strongly enhanced in non-conducting,weakly polarizable media.Strategies to further improve CNT-DEP for s-SWCNT-relevant applications are given as well.Overall,this work should serve as a practical guideline to select the appropriate setting for effective CNT DEPs.
基金The research was funded by the Initiative and Networking Fund of the Helmholtz Gemeinschaft Deutscher Forschungszentren and equipment grant from Agilent Technologies.
文摘We introduce voltage-contrast scanning electron microscopy(VC-SEM)for visual characterization of the electronic properties of single-walled carbon nanotubes.VC-SEM involves tuning the electronic band structure and imaging the potential profi le along the length of the nanotube.The resultant secondary electron contrast allows to distinguish between metallic and semiconducting carbon nanotubes and to follow the switching of semiconducting nanotube devices,as confi rmed by in situ electrical transport measurements.We demonstrate that high-density arrays of individual nanotube devices can be rapidly and simultaneously characterized.A leakage current model in combination with fi nite element simulations of the device electrostatics is presented in order to explain the observed contrast evolution of the nanotube and surface electrodes.This work serves to fi ll a void in electronic characterization of molecular device architectures.
文摘The article"Principles of carbon nanotube dielectrophoresis" written by Wenshan Li,Frank Hennrich,Benjamin S.Flavel,Simone Dehm,Manfred Kappes,and Ralph Krupke,was erroneously originally published electronically on the publisher internet portal(currently SpringerLink)without Open Access.