期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
三维正交非结构网格数值模型中物理流场的定义方法与改进 被引量:2
1
作者 刘晓辉 董礼先 ralph t.cheng 《海洋与湖沼》 CAS CSCD 北大核心 2010年第4期621-627,共7页
使用Casulli等(2000)的数值方法建立了基于正交非结构网格的U型渠道的三维近岸正压水动力数值模型,检验了模型使用ELM(Eulerian-Lagrangian Method)方法处理平流项时,物理流场的定义对模拟结果的作用。数值试验和结果分析说明,使用ELM... 使用Casulli等(2000)的数值方法建立了基于正交非结构网格的U型渠道的三维近岸正压水动力数值模型,检验了模型使用ELM(Eulerian-Lagrangian Method)方法处理平流项时,物理流场的定义对模拟结果的作用。数值试验和结果分析说明,使用ELM方法计算平流项所需的物理流场对计算结果影响明显,而目前常用的两种物理流场定义方法都存在一定不足——水位计算值对流速变化的反映不灵敏或者会产生小扰动等。针对常用物理流场定义方法的不足之处,作者在Casulli方法的基础上利用对多边形切向流速分量进行平均的方法改进了物理流场定义,抑制了小扰动。 展开更多
关键词 非结构网格 数值模型 ELM方法 物理流场
下载PDF
On low-pass digital filters in oceanography 被引量:1
2
作者 Wang Jin ralph t.cheng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1993年第2期183-196,共14页
Two types of filters are widely used to remove semidirunal and diurnal tidal signals and other high frequency noises in oceanography.The first type of filters uses moving average with weights in time domain,and can be... Two types of filters are widely used to remove semidirunal and diurnal tidal signals and other high frequency noises in oceanography.The first type of filters uses moving average with weights in time domain,and can be easily operated.Some data will be lost at each end of the time series,especially for the low low-pass filters.The second type of filters uses the discrete Fourier transform filter(DFTF)which operates in the frequency domain,and there are no data loss at the ends for the forward transform.However,owing to the Gibbs phenomenon and the discrete sampling(Nyquist effect),ringing appears in the inverse transformed data,which is especially serious at each end.Thus some data at the ends are also discarded.The present study tries to find out what causes the ringing and then to seek for methods to overcome the ringing.We have found that there are two kinds of ringings,one is the Gibbs phenomenon,as defined before.The other is the'Nyquist'ringing due to sampling Nyquist critical frequency.The former is due to the abrupt transition in frequency band.The Gibbs and Nyquist effects show the ringing at each end of the filtered time series.Thus,the use of a cosine taper or a linear taper on the window in the frequency domain makes the transition band smooth,so that the Gibbs phenomenon will be minimized.Before applying the Fast Fourier Transform(FFT),the original time series at each end is properly tapered by a split cosine bell that reduces significant ringing since this method limits the energy transfer from outside of the Nyquist frequency.Thus,the DFTF can be a powerful tool to suppress the signals in which we are not interested,with sharp peaks in low frequency variation and less data loss at each end. 展开更多
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部