A decomposition of a graph H is a partition of the edge set of H into edge-disjoint subgraphs . If for all , then G is a decomposition of H by G. Two decompositions and of the complete bipartite graph are orthogonal i...A decomposition of a graph H is a partition of the edge set of H into edge-disjoint subgraphs . If for all , then G is a decomposition of H by G. Two decompositions and of the complete bipartite graph are orthogonal if, for all . A set of decompositions of is a set of k mutually orthogonal graph squares (MOGS) if and are orthogonal for all and . For any bipartite graph G with n edges, denotes the maximum number k in a largest possible set of MOGS of by G. Our objective in this paper is to compute where is a path of length d with d + 1 vertices (i.e. Every edge of this path is one-to-one corresponding to an isomorphic to a certain graph F).展开更多
An orthogonal double cover (ODC) of a graph H is a collection of subgraphs (pages) of H, so that they cover every edge of H twice and the intersection of any two of them contains exactly one edge. An ODC G of H is cyc...An orthogonal double cover (ODC) of a graph H is a collection of subgraphs (pages) of H, so that they cover every edge of H twice and the intersection of any two of them contains exactly one edge. An ODC G of H is cyclic (CODC) if the cyclic group of order is a subgroup of the automorphism group of G. In this paper, we introduce a general orthogonal labelling for CODC of circulant graphs and construct CODC by certain classes of graphs such as complete bipartite graph, the union of the co-cycles graph with a star, the center vertex of which, belongs to the co-cycles graph and graphs that are connected by a one vertex.展开更多
文摘A decomposition of a graph H is a partition of the edge set of H into edge-disjoint subgraphs . If for all , then G is a decomposition of H by G. Two decompositions and of the complete bipartite graph are orthogonal if, for all . A set of decompositions of is a set of k mutually orthogonal graph squares (MOGS) if and are orthogonal for all and . For any bipartite graph G with n edges, denotes the maximum number k in a largest possible set of MOGS of by G. Our objective in this paper is to compute where is a path of length d with d + 1 vertices (i.e. Every edge of this path is one-to-one corresponding to an isomorphic to a certain graph F).
文摘An orthogonal double cover (ODC) of a graph H is a collection of subgraphs (pages) of H, so that they cover every edge of H twice and the intersection of any two of them contains exactly one edge. An ODC G of H is cyclic (CODC) if the cyclic group of order is a subgroup of the automorphism group of G. In this paper, we introduce a general orthogonal labelling for CODC of circulant graphs and construct CODC by certain classes of graphs such as complete bipartite graph, the union of the co-cycles graph with a star, the center vertex of which, belongs to the co-cycles graph and graphs that are connected by a one vertex.