Background:New Omicron subvariants are emerging rapidly from BA.1 to BA.4 and BA.5.Their pathogenicity has changed from that of wild-type(WH-09)and Omicron variants have over time become globally dominant.The spike pr...Background:New Omicron subvariants are emerging rapidly from BA.1 to BA.4 and BA.5.Their pathogenicity has changed from that of wild-type(WH-09)and Omicron variants have over time become globally dominant.The spike proteins of BA.4 and BA.5 that serve as the target for vaccine-induced neutralizing antibodies have also changed compared to the previous subvariants,which is likely to cause immune es-cape and the reduction of the protective effect of the vaccine.Our study addresses the above issues and provides a basis for formulating relevant prevention and control strategies.Methods:We collected cellular supernatant and cell lysates and measured the viral titers,viral RNA loads,and E subgenomic RNA(E sgRNA)loads in different Omicron subvariants grown in Vero E6 cells,using WH-09 and Delta variants as a reference.Additionally,we evaluated the in vitro neutralizing activity of different Omicron sub-variants and compared it to the WH-09 and Delta variants using macaque sera with different types of immunity.Results:As the SARS-CoV-2 evolved into Omicron BA.1,the replication ability in vitro began to decrease.Then with the emergence of new subvariants,the replication ability gradually recovered and became stable in the BA.4 and BA.5 subvariants.In WH-09-inactivated vaccine sera,geometric mean titers of neutralization antibodies against different Omicron subvariants declined by 3.7~15.4-fold compared to those against WH-09.In Delta-inactivated vaccine sera,geometric mean titers of neutrali-zation antibodies against Omicron subvariants declined by 3.1~7.4-fold compared to those against Delta.Conclusion:According to the findings of this research,the replication efficiency of all Omicron subvariants declined compared with WH-09 and Delta variants,and was lower in BA.1 than in other Omicron subvariants.After two doses of inactivated(WH-09 or Delta)vaccine,cross-neutralizing activities against various Omicron subvariants were seen despite a decline in neutralizing titers.展开更多
Evidence suggests associations between COVID-19 patients or vaccines and glycometabolic dysfunction and an even higher risk of the occurrence of diabetes.Herein,we retrospectively analyzed pancreatic lesions in autops...Evidence suggests associations between COVID-19 patients or vaccines and glycometabolic dysfunction and an even higher risk of the occurrence of diabetes.Herein,we retrospectively analyzed pancreatic lesions in autopsy tissues from 67 SARS-CoV-2 infected non-human primates(NHPs)models and 121 vaccinated and infected NHPs from 2020 to 2023 and COVID-19 patients.Multi-label immunofluorescence revealed direct infection of both exocrine and endocrine pancreatic cells by the virus in NHPs and humans.Minor and limited phenotypic and histopathological changes were observed in adult models.Systemic proteomics and metabolomics results indicated metabolic disorders,mainly enriched in insulin resistance pathways,in infected adult NHPs,along with elevated fasting C-peptide and C-peptide/glucose ratio levels.Furthermore,in elder COVID-19 NHPs,SARS-CoV-2 infection causes loss of beta(β)cells and lower expressed-insulin in situ characterized by islet amyloidosis and necrosis,activation ofα-SMA and aggravated fibrosis consisting of lower collagen in serum,an increase of pancreatic inflammation and stress markers,ICAM-1 and G3BP1,along with more severe glycometabolic dysfunction.In contrast,vaccination maintained glucose homeostasis by activating insulin receptorαand insulin receptorβ.Overall,the cumulative risk of diabetes post-COVID-19 is closely tied to age,suggesting more attention should be paid to blood sugar management in elderly COVID-19 patients.展开更多
Forward osmosis(FO)as an energy-saving membrane process has attracted much attention in food concentration,water treatment,and desalination.Thin film composite(TFC)membrane is the most popular FO membrane,but it suffe...Forward osmosis(FO)as an energy-saving membrane process has attracted much attention in food concentration,water treatment,and desalination.Thin film composite(TFC)membrane is the most popular FO membrane,but it suffers from the internal concentration polarization(ICP),which significantly limits the water flux and FO efficiency.In this report,we demonstrate a novel and high-performing thin film nanocomposite(TFN)membrane that employs a hydrophilic interlayer composed of imogolite nanotubes(INTs)and polydopamine(PDA).The INTs can be adhered to the porous substrate by the self-polymerization of PDA,and the as-prepared PDA/INTs interlayer displays a nanostructured network with outstanding hydrophilicity.The detailed investigation was conducted to understand the relationship between the structure and property of the PDA/INTs interlayer and the morphology and performance of the TFN membrane.The TFN membrane with the PDA/INTs interlayer performs a thinner and smoother polyamide selective layer.Correspondingly,the TFN membrane shows a water flux of 18.38 L·m^(-2)·h^(-1),which is 2.18 times of the pristine TFC membrane.Moreover,the TFN membrane has a minimized structural parameter(577μm),almost a half of that of the pristine one(949μm).It reveals that the ICP effect of TFC membrane can be effectively alleviated by using a hydrophilic PDA/INTs interlayer.This TFN membrane with a satisfactory water permeability is promising in terms of future applications.展开更多
Plasmonic optical manipulation has emerged as an affordable alternative to manipulate single chemical and biological molecules in nanoscience.Although the theoretical models of sub-5 nm single-molecule trapping have b...Plasmonic optical manipulation has emerged as an affordable alternative to manipulate single chemical and biological molecules in nanoscience.Although the theoretical models of sub-5 nm single-molecule trapping have been considered promising,the experimental strategies remain a challenge due to the Brownian motions and weak optical gradient forces with significantly reduced molecular polarizability.Herein,we address direct trapping and in situ sensing of single molecules with unprecedented size,down to∼5Åin solution,by employing an adjustable plasmonic optical nanogap and single-molecule conductance measurement.The theoretical simulations demonstrate that local fields with a high enhancement factor,over 103,were generated at such small nanogaps,resulting in optical forces as large as several piconewtons to suppress the Brownian motion and trap a molecule of length sub-1 nm.This work demonstrates a strategy for directly manipulating the small molecule units,promising a vast multitude of applications in chemical,biological,and materials sciences at the single-molecule level.展开更多
Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)is transmitted on mink farms between minks and humans in many countries.However,the systemic pathological features of SARS-CoV-2-infected minks are mostly unk...Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)is transmitted on mink farms between minks and humans in many countries.However,the systemic pathological features of SARS-CoV-2-infected minks are mostly unknown.Here,we demonstrated that minks were largely permissive to SARS-CoV-2,characterized by severe and diffuse alveolar damage,and lasted at least 14 days post inoculation(dpi).We first reported that infected minks displayed multiple organ-system lesions accompanied by an increased inflammatory response and widespread viral distribution in the cardiovascular,hepatobiliary,urinary,endocrine,digestive,and immune systems.The viral protein partially co-localized with activated Mac-2+macrophages throughout the body.Moreover,we first found that the alterations in lipids and metabolites were correlated with the histological lesions in infected minks,especially at 6 dpi,and were similar to that of patients with severe and fatal COVID-19.Particularly,altered metabolic pathways,abnormal digestion,and absorption of vitamins,lipids,cholesterol,steroids,amino acids,and proteins,consistent with hepatic dysfunction,highlight metabolic and immune dysregulation.Enriched kynurenine in infected minks contributed to significant activation of the kynurenine pathway and was related to macrophage activation.Melatonin,which has significant anti-inflammatory and immunomodulating effects,was significantly downregulated at 6 dpi and displayed potential as a targeted medicine.Our data first illustrate systematic analyses of infected minks to recapitulate those observations in severe and fetal COVID-19 patients,delineating a useful animal model to mimic SARS-CoV-2-induced systematic and severe pathophysiological features and provide a reliable tool for the development of effective and targeted treatment strategies,vaccine research,and potential biomarkers.展开更多
基金National Research and Development Project of China,Grant/Award Number:2022YFC0867600CAMS initiative for Innovative Medicine of China,Grant/Award Number:2021-I2M-1-035。
文摘Background:New Omicron subvariants are emerging rapidly from BA.1 to BA.4 and BA.5.Their pathogenicity has changed from that of wild-type(WH-09)and Omicron variants have over time become globally dominant.The spike proteins of BA.4 and BA.5 that serve as the target for vaccine-induced neutralizing antibodies have also changed compared to the previous subvariants,which is likely to cause immune es-cape and the reduction of the protective effect of the vaccine.Our study addresses the above issues and provides a basis for formulating relevant prevention and control strategies.Methods:We collected cellular supernatant and cell lysates and measured the viral titers,viral RNA loads,and E subgenomic RNA(E sgRNA)loads in different Omicron subvariants grown in Vero E6 cells,using WH-09 and Delta variants as a reference.Additionally,we evaluated the in vitro neutralizing activity of different Omicron sub-variants and compared it to the WH-09 and Delta variants using macaque sera with different types of immunity.Results:As the SARS-CoV-2 evolved into Omicron BA.1,the replication ability in vitro began to decrease.Then with the emergence of new subvariants,the replication ability gradually recovered and became stable in the BA.4 and BA.5 subvariants.In WH-09-inactivated vaccine sera,geometric mean titers of neutralization antibodies against different Omicron subvariants declined by 3.7~15.4-fold compared to those against WH-09.In Delta-inactivated vaccine sera,geometric mean titers of neutrali-zation antibodies against Omicron subvariants declined by 3.1~7.4-fold compared to those against Delta.Conclusion:According to the findings of this research,the replication efficiency of all Omicron subvariants declined compared with WH-09 and Delta variants,and was lower in BA.1 than in other Omicron subvariants.After two doses of inactivated(WH-09 or Delta)vaccine,cross-neutralizing activities against various Omicron subvariants were seen despite a decline in neutralizing titers.
基金supported by the Institute of Basic Medical Sciences,the Chinese Academy of Medical Sciences,the Neuroscience Center,the China Human Brain Banking Consortium,the ALS Brain Bank Initiative in China,and Home for Heal and Help for their assistance in this paper.This work was supported by the National Natural Science Foundation of China(82141204,82061138007,82221004,82041008)the National Key Research and Development Project of China(2020YFA0707803)+2 种基金the CAMS Innovation Fund for Medical Sciences(CIFMS)grant(2021-1-I2M-035,2021-1-I2M-034 and 2021-CAMS-JZ002)Bill&Melinda Gates Foundation(INV-006371)Key-Area Research and Development Program of Guangdong Province(2022B1111020005).
文摘Evidence suggests associations between COVID-19 patients or vaccines and glycometabolic dysfunction and an even higher risk of the occurrence of diabetes.Herein,we retrospectively analyzed pancreatic lesions in autopsy tissues from 67 SARS-CoV-2 infected non-human primates(NHPs)models and 121 vaccinated and infected NHPs from 2020 to 2023 and COVID-19 patients.Multi-label immunofluorescence revealed direct infection of both exocrine and endocrine pancreatic cells by the virus in NHPs and humans.Minor and limited phenotypic and histopathological changes were observed in adult models.Systemic proteomics and metabolomics results indicated metabolic disorders,mainly enriched in insulin resistance pathways,in infected adult NHPs,along with elevated fasting C-peptide and C-peptide/glucose ratio levels.Furthermore,in elder COVID-19 NHPs,SARS-CoV-2 infection causes loss of beta(β)cells and lower expressed-insulin in situ characterized by islet amyloidosis and necrosis,activation ofα-SMA and aggravated fibrosis consisting of lower collagen in serum,an increase of pancreatic inflammation and stress markers,ICAM-1 and G3BP1,along with more severe glycometabolic dysfunction.In contrast,vaccination maintained glucose homeostasis by activating insulin receptorαand insulin receptorβ.Overall,the cumulative risk of diabetes post-COVID-19 is closely tied to age,suggesting more attention should be paid to blood sugar management in elderly COVID-19 patients.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.2021qntd13)the Guangdong Basic and Applied Basic Research Foundation(No.2022A1515010021)。
文摘Forward osmosis(FO)as an energy-saving membrane process has attracted much attention in food concentration,water treatment,and desalination.Thin film composite(TFC)membrane is the most popular FO membrane,but it suffers from the internal concentration polarization(ICP),which significantly limits the water flux and FO efficiency.In this report,we demonstrate a novel and high-performing thin film nanocomposite(TFN)membrane that employs a hydrophilic interlayer composed of imogolite nanotubes(INTs)and polydopamine(PDA).The INTs can be adhered to the porous substrate by the self-polymerization of PDA,and the as-prepared PDA/INTs interlayer displays a nanostructured network with outstanding hydrophilicity.The detailed investigation was conducted to understand the relationship between the structure and property of the PDA/INTs interlayer and the morphology and performance of the TFN membrane.The TFN membrane with the PDA/INTs interlayer performs a thinner and smoother polyamide selective layer.Correspondingly,the TFN membrane shows a water flux of 18.38 L·m^(-2)·h^(-1),which is 2.18 times of the pristine TFC membrane.Moreover,the TFN membrane has a minimized structural parameter(577μm),almost a half of that of the pristine one(949μm).It reveals that the ICP effect of TFC membrane can be effectively alleviated by using a hydrophilic PDA/INTs interlayer.This TFN membrane with a satisfactory water permeability is promising in terms of future applications.
基金supported by the National Natural Science Foundation of China(grant nos.T2222002,21973079,22032004,92161118,12174324,21991130,and 21905238)the Ministry of Science and Technology of the People’s Republic of China(grant no.2021YFA1201502)the Natural Science Foundation of Fujian Province(grant no.2021J06008).
文摘Plasmonic optical manipulation has emerged as an affordable alternative to manipulate single chemical and biological molecules in nanoscience.Although the theoretical models of sub-5 nm single-molecule trapping have been considered promising,the experimental strategies remain a challenge due to the Brownian motions and weak optical gradient forces with significantly reduced molecular polarizability.Herein,we address direct trapping and in situ sensing of single molecules with unprecedented size,down to∼5Åin solution,by employing an adjustable plasmonic optical nanogap and single-molecule conductance measurement.The theoretical simulations demonstrate that local fields with a high enhancement factor,over 103,were generated at such small nanogaps,resulting in optical forces as large as several piconewtons to suppress the Brownian motion and trap a molecule of length sub-1 nm.This work demonstrates a strategy for directly manipulating the small molecule units,promising a vast multitude of applications in chemical,biological,and materials sciences at the single-molecule level.
基金This work was supported by the National Natural Science Foundation of China(Grant No.32070543)the National Key Research and Development Project of China(Grant No.2020YFA0707803 and 2021YFC0863300)the CAMS Innovation Fund for Medical Sciences(CIFMS)grant(2021-1-I2M-035,2021-1-I2M-034).
文摘Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)is transmitted on mink farms between minks and humans in many countries.However,the systemic pathological features of SARS-CoV-2-infected minks are mostly unknown.Here,we demonstrated that minks were largely permissive to SARS-CoV-2,characterized by severe and diffuse alveolar damage,and lasted at least 14 days post inoculation(dpi).We first reported that infected minks displayed multiple organ-system lesions accompanied by an increased inflammatory response and widespread viral distribution in the cardiovascular,hepatobiliary,urinary,endocrine,digestive,and immune systems.The viral protein partially co-localized with activated Mac-2+macrophages throughout the body.Moreover,we first found that the alterations in lipids and metabolites were correlated with the histological lesions in infected minks,especially at 6 dpi,and were similar to that of patients with severe and fatal COVID-19.Particularly,altered metabolic pathways,abnormal digestion,and absorption of vitamins,lipids,cholesterol,steroids,amino acids,and proteins,consistent with hepatic dysfunction,highlight metabolic and immune dysregulation.Enriched kynurenine in infected minks contributed to significant activation of the kynurenine pathway and was related to macrophage activation.Melatonin,which has significant anti-inflammatory and immunomodulating effects,was significantly downregulated at 6 dpi and displayed potential as a targeted medicine.Our data first illustrate systematic analyses of infected minks to recapitulate those observations in severe and fetal COVID-19 patients,delineating a useful animal model to mimic SARS-CoV-2-induced systematic and severe pathophysiological features and provide a reliable tool for the development of effective and targeted treatment strategies,vaccine research,and potential biomarkers.