In this paper,we prove that the electrical Lie algebra e D_(5)is isomorphic to the semidirect product of sp_(4)and a 2-step nilpotent Lie algebra.Furthermore,we classify the irreducible highest weight modules for e D_...In this paper,we prove that the electrical Lie algebra e D_(5)is isomorphic to the semidirect product of sp_(4)and a 2-step nilpotent Lie algebra.Furthermore,we classify the irreducible highest weight modules for e D_(5).展开更多
We show that the support of an irreducible weight module over the twisted Heisenberg-Virasoro algebra, which has an infinite-dimensional weight space, coincides with the weight lattice and that all nontrivial weight s...We show that the support of an irreducible weight module over the twisted Heisenberg-Virasoro algebra, which has an infinite-dimensional weight space, coincides with the weight lattice and that all nontrivial weight spaces of such a module are infinite dimensional. As a corollary, we obtain that every irreducible weight module over the twisted Heisenber-Virasoro algebra, having a nontrivial finite-dimensional weight space, is a Harish-Chandra module (and hence is either an irreducible highest or lowest weight module or an irreducible module from the intermediate series).展开更多
基金Supported by the Fundamental Research Funds for the Central Universities(Grant No.2232021G-13).
文摘In this paper,we prove that the electrical Lie algebra e D_(5)is isomorphic to the semidirect product of sp_(4)and a 2-step nilpotent Lie algebra.Furthermore,we classify the irreducible highest weight modules for e D_(5).
基金NSF Grants 10471096,10571120 of China"One Hundred Talents Program"from the University of Science and Technology of China
文摘We show that the support of an irreducible weight module over the twisted Heisenberg-Virasoro algebra, which has an infinite-dimensional weight space, coincides with the weight lattice and that all nontrivial weight spaces of such a module are infinite dimensional. As a corollary, we obtain that every irreducible weight module over the twisted Heisenber-Virasoro algebra, having a nontrivial finite-dimensional weight space, is a Harish-Chandra module (and hence is either an irreducible highest or lowest weight module or an irreducible module from the intermediate series).