The resolvent helps solve a PDE defined on all of wave-number space, . Almost all electromagnetic scattering problems have been solved on the spatial side and use the spatial Green’s function approach. This work is m...The resolvent helps solve a PDE defined on all of wave-number space, . Almost all electromagnetic scattering problems have been solved on the spatial side and use the spatial Green’s function approach. This work is motivated by solving an EM problem on the Fourier side in order to relate the resolvent and the Green’s function. Methods used include Matrix Theory, Fourier Transforms, and Green’s function. A closed form of the resolvent is derived for the electromagnetic Helmholtz reduced vector wave equation, with Dirichlet boundary conditions. The resolvent is then used to derive expressions for the solution of the EM wave equation and provide Sobolev estimates for the solution.展开更多
文摘The resolvent helps solve a PDE defined on all of wave-number space, . Almost all electromagnetic scattering problems have been solved on the spatial side and use the spatial Green’s function approach. This work is motivated by solving an EM problem on the Fourier side in order to relate the resolvent and the Green’s function. Methods used include Matrix Theory, Fourier Transforms, and Green’s function. A closed form of the resolvent is derived for the electromagnetic Helmholtz reduced vector wave equation, with Dirichlet boundary conditions. The resolvent is then used to derive expressions for the solution of the EM wave equation and provide Sobolev estimates for the solution.