The effect of intelligent fault diagnosis of mechanical equipment based on data-driven is often premised on big data and class-balance.However,due to the limitation of working environment,operating conditions and equi...The effect of intelligent fault diagnosis of mechanical equipment based on data-driven is often premised on big data and class-balance.However,due to the limitation of working environment,operating conditions and equipment status,the fault data collected by mechanical equipment are often small and imbalanced with normal samples.Therefore,in order to solve the abovementioned dilemma faced by the fault diagnosis of practical mechanical equipment,an auxiliary generative mutual adversarial network(AGMAN)is proposed.Firstly,the generator combined with the auto-encoder(AE)constructs the decoder reconstruction feature loss to assist it to complete the accurate mapping between noise distribution and real data distribution,generate highquality fake samples,supplement the imbalanced dataset to improve the accuracy of small sample class-imbalanced fault diagnosis.Secondly,the discriminator introduces a structure with unshared dual discriminators.Realize the mutual adversarial between the dual discriminator by setting the scoring criteria that the dual discriminator are completely opposite to the real and fake samples,thus improving the quality and diversity of generated samples to avoid mode collapse.Finally,the auxiliary generator and the dual discriminator are updated alternately.The auxiliary generator can generate fake samples that deceive both discriminators at the same time.Meanwhile,the dual discriminator cannot give correct scores to the real and fake samples according to their respective scoring criteria,so as to achieve Nash equilibrium.Using three different test-bed datasets for verification,the experimental results show that the proposed method can explicitly generate highquality fake samples,which greatly improves the accuracy of class-unbalanced fault diagnosis under small sample,especially when it is extremely imbalanced,after using this method to supplement fake samples,the fault diagnosis accuracy of DCNN and SAE are relatively big improvements.So,the proposed method provides an effective solution for small sample class-unbalanced fault diagnosis.展开更多
A fuzzy improved water pollution index was proposed based on fuzzy inference system and water pollution index. This method can not only give a comprehensive water quality rank, but also describe the water quality situ...A fuzzy improved water pollution index was proposed based on fuzzy inference system and water pollution index. This method can not only give a comprehensive water quality rank, but also describe the water quality situation with a quantitative value, which is convenient for the water quality comparison between the same ranks. This proposed method is used to assess water quality of Qu River in Sichuan, China. Data used in the assessment were collected from four monitoring stations from 2006 to 2010. The assessment results show that Qu River water quality presents a downward trend and the overall water quality in 2010 is the worst. The spatial variation indicates that water quality of Nanbashequ section is the pessimal. For the sake of comparison, fuzzy comprehensive evaluation and grey relational method were also employed to assess water quality of Qu River. The comparisons of these three approaches' assessment results show that the proposed method is reliable.展开更多
基金co-supported by the Special Project of the National Key Research and Development Program of China (No. 2020YFB1709801)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (No. KYCX21_0230)+1 种基金the National Natural Science Foundation of China (No. 51975276)the National Science and Technology Major Project (No. 2017-Ⅳ-0008-0045).
文摘The effect of intelligent fault diagnosis of mechanical equipment based on data-driven is often premised on big data and class-balance.However,due to the limitation of working environment,operating conditions and equipment status,the fault data collected by mechanical equipment are often small and imbalanced with normal samples.Therefore,in order to solve the abovementioned dilemma faced by the fault diagnosis of practical mechanical equipment,an auxiliary generative mutual adversarial network(AGMAN)is proposed.Firstly,the generator combined with the auto-encoder(AE)constructs the decoder reconstruction feature loss to assist it to complete the accurate mapping between noise distribution and real data distribution,generate highquality fake samples,supplement the imbalanced dataset to improve the accuracy of small sample class-imbalanced fault diagnosis.Secondly,the discriminator introduces a structure with unshared dual discriminators.Realize the mutual adversarial between the dual discriminator by setting the scoring criteria that the dual discriminator are completely opposite to the real and fake samples,thus improving the quality and diversity of generated samples to avoid mode collapse.Finally,the auxiliary generator and the dual discriminator are updated alternately.The auxiliary generator can generate fake samples that deceive both discriminators at the same time.Meanwhile,the dual discriminator cannot give correct scores to the real and fake samples according to their respective scoring criteria,so as to achieve Nash equilibrium.Using three different test-bed datasets for verification,the experimental results show that the proposed method can explicitly generate highquality fake samples,which greatly improves the accuracy of class-unbalanced fault diagnosis under small sample,especially when it is extremely imbalanced,after using this method to supplement fake samples,the fault diagnosis accuracy of DCNN and SAE are relatively big improvements.So,the proposed method provides an effective solution for small sample class-unbalanced fault diagnosis.
基金supported by the National Natural Science Foundation of China (No. 51478025)
文摘A fuzzy improved water pollution index was proposed based on fuzzy inference system and water pollution index. This method can not only give a comprehensive water quality rank, but also describe the water quality situation with a quantitative value, which is convenient for the water quality comparison between the same ranks. This proposed method is used to assess water quality of Qu River in Sichuan, China. Data used in the assessment were collected from four monitoring stations from 2006 to 2010. The assessment results show that Qu River water quality presents a downward trend and the overall water quality in 2010 is the worst. The spatial variation indicates that water quality of Nanbashequ section is the pessimal. For the sake of comparison, fuzzy comprehensive evaluation and grey relational method were also employed to assess water quality of Qu River. The comparisons of these three approaches' assessment results show that the proposed method is reliable.