Lithium-ion batteries are expected to operate within a narrow temperature window around room temperature for optimal performance and lifetime.Therefore,in cold environments,electric vehicle battery packs must be exten...Lithium-ion batteries are expected to operate within a narrow temperature window around room temperature for optimal performance and lifetime.Therefore,in cold environments,electric vehicle battery packs must be extensively preheated prior to charge or discharge.However,conventional preheating is accomplished externally,which is slow and thus significantly increases charging times.Recently,internal heating has been demonstrated as a potential solution to quickly and uniformly preheat a lithium-ion pouch cell.However,internal heating has not been evaluated in other battery formats such as cylindrical batteries.In this work,we present a numerical model of a 4680 battery with internal heaters for fast preheating in cold environments.The effects that the number of heater layers,heating duration,resting duration,environmental temperature,and boundary heat transfer coefficient have on the temperature heterogeneity of the battery were investigated.The results show that internal heating alone reduces the temperature variation within the battery by a factor of 5 compared to external heating,and by a factor of 20 when combining internal and external heating.This study further proves that internal preheating of lithium-ion batteries is a promising thermal management strategy,and provides guidance on potential design considerations and heating protocols to implement internal heating.展开更多
基金supported by an Early Career Faculty grant from NASA’s Space Technology Research Grants Program(No.80NSSC23K0072)the National Science Foundation Graduate Research Fellowships Program(No.2139319).
文摘Lithium-ion batteries are expected to operate within a narrow temperature window around room temperature for optimal performance and lifetime.Therefore,in cold environments,electric vehicle battery packs must be extensively preheated prior to charge or discharge.However,conventional preheating is accomplished externally,which is slow and thus significantly increases charging times.Recently,internal heating has been demonstrated as a potential solution to quickly and uniformly preheat a lithium-ion pouch cell.However,internal heating has not been evaluated in other battery formats such as cylindrical batteries.In this work,we present a numerical model of a 4680 battery with internal heaters for fast preheating in cold environments.The effects that the number of heater layers,heating duration,resting duration,environmental temperature,and boundary heat transfer coefficient have on the temperature heterogeneity of the battery were investigated.The results show that internal heating alone reduces the temperature variation within the battery by a factor of 5 compared to external heating,and by a factor of 20 when combining internal and external heating.This study further proves that internal preheating of lithium-ion batteries is a promising thermal management strategy,and provides guidance on potential design considerations and heating protocols to implement internal heating.