期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Decision Tree and Naive Bayes Algorithm for Classification and Generation of Actionable Knowledge for Direct Marketing
1
作者 Masud Karim rashedur m.rahman 《Journal of Software Engineering and Applications》 2013年第4期196-206,共11页
Many companies like credit card, insurance, bank, retail industry require direct marketing. Data mining can help those institutes to set marketing goal. Data mining techniques have good prospects in their target audie... Many companies like credit card, insurance, bank, retail industry require direct marketing. Data mining can help those institutes to set marketing goal. Data mining techniques have good prospects in their target audiences and improve the likelihood of response. In this work we have investigated two data mining techniques: the Naive Bayes and the C4.5 decision tree algorithms. The goal of this work is to predict whether a client will subscribe a term deposit. We also made comparative study of performance of those two algorithms. Publicly available UCI data is used to train and test the performance of the algorithms. Besides, we extract actionable knowledge from decision tree that focuses to take interesting and important decision in business area. 展开更多
关键词 CRM Actionable KNOWLEDGE Data Mining C4.5 NAIVE BAYES ROC CLASSIFICATION
下载PDF
Optimizing BERT for Bengali Emotion Classification: Evaluating Knowledge Distillation, Pruning, and Quantization
2
作者 Md Hasibur Rahman Mohammed Arif Uddin +1 位作者 Zinnat Fowzia Ria rashedur m.rahman 《Computer Modeling in Engineering & Sciences》 2025年第2期1637-1666,共30页
The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text classificati... The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text classification.However,BERT’s size and computational demands limit its practicality,especially in resource-constrained settings.This research compresses the BERT base model for Bengali emotion classification through knowledge distillation(KD),pruning,and quantization techniques.Despite Bengali being the sixth most spoken language globally,NLP research in this area is limited.Our approach addresses this gap by creating an efficient BERT-based model for Bengali text.We have explored 20 combinations for KD,quantization,and pruning,resulting in improved speedup,fewer parameters,and reduced memory size.Our best results demonstrate significant improvements in both speed and efficiency.For instance,in the case of mBERT,we achieved a 3.87×speedup and 4×compression ratio with a combination of Distil+Prune+Quant that reduced parameters from 178 to 46 M,while the memory size decreased from 711 to 178 MB.These results offer scalable solutions for NLP tasks in various languages and advance the field of model compression,making these models suitable for real-world applications in resource-limited environments. 展开更多
关键词 Bengali NLP black-box distillation emotion classification model compression post-training quantization unstructured pruning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部