期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Strength degradation of sandstone and granodiorite under uniaxial cyclic loading 被引量:13
1
作者 rashid geranmayeh vaneghi Behnam Ferdosi +1 位作者 Achola D.Okoth Barnabas Kuek 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第1期117-126,共10页
Change in mechanical properties of rocks under static loading has been widely studied and documented.However, the response of rocks to cyclic loads is still a much-debated topic. Fatigue is the phenomenon when rocks u... Change in mechanical properties of rocks under static loading has been widely studied and documented.However, the response of rocks to cyclic loads is still a much-debated topic. Fatigue is the phenomenon when rocks under cyclic loading fail at much lower strength as compared to those subjected to the monotonic loading conditions. A few selected cored granodiorite and sandstone specimens have been subjected to uniaxial cyclic compression tests to obtain the unconfined fatigue strength and life. This study seeks to examine the effects of cyclic loading conditions, loading amplitude and applied stress level on the fatigue life of sandstone, as a soft rock, and granodiorite, as a hard rock, under uniaxial compression test. One aim of this study is to determine which of the loading conditions has a stronger effect on rock fatigue response. The fatigue response of hard rocks and soft rocks is also compared. It is shown that the loading amplitude is the most important factor affecting the cyclic response of the tested rocks. The more the loading amplitude, the shorter the fatigue life, and the greater the strength degradation. The granodiorite specimens showed more strength degradation compared to the sandstone specimens when subjected to cyclic loading. It is shown that failure modes of specimens under cyclic loadings are different from those under static loadings. More local cracks were observed under cyclic loadings especially for granodiorite rock specimens. 展开更多
关键词 Rock fatigue Cyclic loading Strength degradation Fatigue life
下载PDF
A modified failure criterion for transversely isotropic rocks 被引量:16
2
作者 Omid Saeidi Vamegh Rasouli +2 位作者 rashid geranmayeh vaneghi Raoof Gholami Seyed Rahman Torabi 《Geoscience Frontiers》 SCIE CAS CSCD 2014年第2期215-225,共11页
A modified failure criterion is proposed to determine the strength of transversely isotropic rocks. Me-chanical properties of some metamorphic and sedimentary rocks including gneiss, slate, marble, schist, shale, sand... A modified failure criterion is proposed to determine the strength of transversely isotropic rocks. Me-chanical properties of some metamorphic and sedimentary rocks including gneiss, slate, marble, schist, shale, sandstone and limestone, which show transversely isotropic behavior, were taken into consider-ation. Afterward, introduced triaxial rock strength criterion was modified for transversely isotropic rocks. Through modification process an index was obtained that can be considered as a strength reduction parameter due to rock strength anisotropy. Comparison of the parameter with previous anisotropy in-dexes in literature showed reasonable results for the studied rock samples. The modified criterion was compared to modified Hoek-Brown and Ramamurthy criteria for different transversely isotropic rocks. It can be concluded that the modified failure criterion proposed in this study can be used for predicting the strength of transversely isotropic rocks. 展开更多
关键词 Transversely isotropic rock Strength anisotropy Failure criterion Triaxial test
下载PDF
Sources of variability in laboratory rock test results
3
作者 rashid geranmayeh vaneghi Seyed Erfan Saberhosseini +3 位作者 Arcady VDyskin Klaus Thoeni Mostafa Sharifzadeh Mohammad Sarmadivaleh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期985-1001,共17页
Appropriate rock characterization is beneficial in providing a reliable judgment on rock properties which is crucial for the design process of rock engineering applications.However,it can be difficult to obtain consis... Appropriate rock characterization is beneficial in providing a reliable judgment on rock properties which is crucial for the design process of rock engineering applications.However,it can be difficult to obtain consistent mechanical parameters due to substantial variations in rock properties.In this research,uniaxial compression tests on dolerite specimens collected from a gold mine in Western Australia showed substantial scatter in the results.Rock categorization based on the P-wave velocities is as accurate as the thin section analysis,which suggests that they can be used together to gain a more accurate initial understanding of the rock types before any laboratory testing.The quality of specimen preparation and rockemachine interaction greatly affect the test results.For instance,non-parallelness of loading platens can lead to considerable scatter of the testing results,which would be perceived as rock variability.It is suggested that the current testing standards should be modified towards a better control of the loading machine performance and equipment precision.Finally,the possibility of pre-existing microcracks in rock,neither detected by the thin section analysis nor by the ultrasonic measurement,must be examined by computed tomography(CT)scanning as they can affect the test results.This study will enhance our knowledge about the sources of variability in laboratory test results of rock which is essential for obtaining reliable data. 展开更多
关键词 Rock property variation Uniaxial compressive strength(UCS) Specimen preparation End flatness Loading equipment precision Pre-existing microcrack
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部