Two new series (A & B) of three materials each based on the aroyl hydrazinato-nickel (II) complex were synthesized and characterized. The core molecule in these series consists of two 4-benzoyloxy benzylidene moie...Two new series (A & B) of three materials each based on the aroyl hydrazinato-nickel (II) complex were synthesized and characterized. The core molecule in these series consists of two 4-benzoyloxy benzylidene moieties and two benzene rings attached at the azomethine moiety. These latter benzene rings have one or two alkoxy chains comprised of either 10, 12, 16 or 18 carbon atoms. The characterization of these two series by polarized optical microscopy and differential scanning calorimetry is described herein. Upon cooling from the Isotropic phase, three of the six materials display a monophasic columnar phase and the other three possess a biphasic nematic and columnar phases. Upon heating, all six materials have a clearance point at high temperatures without displaying mesomorphic behavior. In series B mesogens, it was observed that the longer the hydrocarbon tail length, the lower the clearance point.展开更多
文摘Two new series (A & B) of three materials each based on the aroyl hydrazinato-nickel (II) complex were synthesized and characterized. The core molecule in these series consists of two 4-benzoyloxy benzylidene moieties and two benzene rings attached at the azomethine moiety. These latter benzene rings have one or two alkoxy chains comprised of either 10, 12, 16 or 18 carbon atoms. The characterization of these two series by polarized optical microscopy and differential scanning calorimetry is described herein. Upon cooling from the Isotropic phase, three of the six materials display a monophasic columnar phase and the other three possess a biphasic nematic and columnar phases. Upon heating, all six materials have a clearance point at high temperatures without displaying mesomorphic behavior. In series B mesogens, it was observed that the longer the hydrocarbon tail length, the lower the clearance point.