The label text is a very important tool for the automatic processing of language. It is used in several applications such as morphological and syntactic text analysis, index-ing, retrieval, finished networks determini...The label text is a very important tool for the automatic processing of language. It is used in several applications such as morphological and syntactic text analysis, index-ing, retrieval, finished networks deterministic (in which all combinations of words that are accepted by the grammar are listed) or by statistical grammars (e.g., an n-gram in which the probabilities of sequences of n words in a specific order are given), etc. In this article, we developed a morphosyntactic labeling system language “Baoule” using hidden Markov models. This will allow us to build a tagged reference corpus and rep-resent major grammatical rules faced “Baoule” language in general. To estimate the parameters of this model, we used a training corpus manually labeled using a set of morpho-syntactic labels. We then proceed to an improvement of the system through the re-estimation procedure parameters of this model.展开更多
It is not more and more, easy to satisfy the important and growing spectrum demands in the context of the static conventional policy spectrum allocation. Therefore, to find a suitable solution to this problem, we are ...It is not more and more, easy to satisfy the important and growing spectrum demands in the context of the static conventional policy spectrum allocation. Therefore, to find a suitable solution to this problem, we are to days observing the apparition of flexible dynamic spectrum allocation methods. These methods that ought to improve more significantly the spectrum use have gained much interest. In fact, the digital dividend due to the change-over from the analog television to the digital terrestrial television must be efficiently used. So the Dynamic Spectrum Access (DSA) can potentially play a key role in shaping the future digital dividend use. In the DSA, two kinds of users or networks coexist on different channels. The first one, known as the primary user, accesses to a channel with high priority;and the second one, known as secondary user has a low priority. This paper presents a dynamic spectrum access protocol based on an auction framework. Our protocol is an interesting tool that allows the networks to bid and obtain on the available spectrum, the rights to be primary and secondary users according their valuations and traffic needs. Based on certain offers, our protocol selects primary and secondary users for each idle channel in order to realize the maximum economic for the regulator or social benefits. We deal with the case in which the offers of the networks are independent one another even if they will share the same channels. We design an algorithm in accordance with our dynamic spectrum access protocol. The algorithm is used here to find an optimal solution to the access allocation problem, specifically to digital dividend. Finally, the results in the numeric section, regarding the three suggested scenarios, show that the proposed dynamic spectrum access protocol is viable. The algorithm is able to eliminate all non-compliant bidders for the available spectrum sharing. We notice that the revenue or social benefits of the regulator is maximized when we have on each channel, one primary user and the maximum number of secondary users.展开更多
文摘The label text is a very important tool for the automatic processing of language. It is used in several applications such as morphological and syntactic text analysis, index-ing, retrieval, finished networks deterministic (in which all combinations of words that are accepted by the grammar are listed) or by statistical grammars (e.g., an n-gram in which the probabilities of sequences of n words in a specific order are given), etc. In this article, we developed a morphosyntactic labeling system language “Baoule” using hidden Markov models. This will allow us to build a tagged reference corpus and rep-resent major grammatical rules faced “Baoule” language in general. To estimate the parameters of this model, we used a training corpus manually labeled using a set of morpho-syntactic labels. We then proceed to an improvement of the system through the re-estimation procedure parameters of this model.
文摘It is not more and more, easy to satisfy the important and growing spectrum demands in the context of the static conventional policy spectrum allocation. Therefore, to find a suitable solution to this problem, we are to days observing the apparition of flexible dynamic spectrum allocation methods. These methods that ought to improve more significantly the spectrum use have gained much interest. In fact, the digital dividend due to the change-over from the analog television to the digital terrestrial television must be efficiently used. So the Dynamic Spectrum Access (DSA) can potentially play a key role in shaping the future digital dividend use. In the DSA, two kinds of users or networks coexist on different channels. The first one, known as the primary user, accesses to a channel with high priority;and the second one, known as secondary user has a low priority. This paper presents a dynamic spectrum access protocol based on an auction framework. Our protocol is an interesting tool that allows the networks to bid and obtain on the available spectrum, the rights to be primary and secondary users according their valuations and traffic needs. Based on certain offers, our protocol selects primary and secondary users for each idle channel in order to realize the maximum economic for the regulator or social benefits. We deal with the case in which the offers of the networks are independent one another even if they will share the same channels. We design an algorithm in accordance with our dynamic spectrum access protocol. The algorithm is used here to find an optimal solution to the access allocation problem, specifically to digital dividend. Finally, the results in the numeric section, regarding the three suggested scenarios, show that the proposed dynamic spectrum access protocol is viable. The algorithm is able to eliminate all non-compliant bidders for the available spectrum sharing. We notice that the revenue or social benefits of the regulator is maximized when we have on each channel, one primary user and the maximum number of secondary users.