Marine biogenic emission of dimethylsulfi de(DMS)has been well recognized as the main natural source of reduced sulfur to the remote marine atmosphere and has the potential to aff ect climate,especially in the polar r...Marine biogenic emission of dimethylsulfi de(DMS)has been well recognized as the main natural source of reduced sulfur to the remote marine atmosphere and has the potential to aff ect climate,especially in the polar regions.We used a global climate model(GCM)to investigate the impact on atmospheric chemistry from a change to the contemporary DMS fl ux to that which has been projected for the late 21 st century.The perturbed simulation corresponded to conditions that pertained to a tripling of equivalent CO 2,which was estimated to occur by year 2090 based on current worst-case greenhouse gas emission scenarios.The changes in zonal mean DMS fl ux were applied to 50°S–70°S Antarctic(ANT)and 65°N–80°N Arctic(ARC)regions.The results indicate that there are clearly diff erent impacts after perturbation in the southern and northern polar regions.Most quantities related to the sulfur cycle show a higher increase in ANT.However,most sulfur compounds have higher peaks in ARC.The perturbation in DMS fl ux leads to an increase of atmospheric DMS of about 45%in ANT and 33.6%in ARC.The sulfur dioxide(SO 2)vertical integral increases around 43%in ANT and 7.5%in ARC.Sulfate(SO 4)vertical integral increases by 17%in ANT and increases around 6%in ARC.Sulfur emissions increases by 21%in ANT and increases by 9.7%in ARC.However,oxidation of DMS by OH increases by 38.2%in ARC and by 15.17%in ANT.Aerosol optical depth(AOD)increases by 4%in the ARC and by 17.5%in the ANT,and increases by 22.8%in austral summer.The importance of the perturbation of the biogenic source to future aerosol burden in polar regions leads to a cooling in surface temperature of 1 K in the ANT and 0.8 K in the ARC.Generally,polar regions in the Antarctic Ocean will have a higher off setting eff ect on warming after DMS fl ux perturbation.展开更多
The popularity of keeping reptiles such as snakes and lizards is ever increasing. The health and welfare of these animals depends on the knowledge and understanding of their environmental and nutritional needs. But wh...The popularity of keeping reptiles such as snakes and lizards is ever increasing. The health and welfare of these animals depends on the knowledge and understanding of their environmental and nutritional needs. But where does a new owner of these species obtain such information? This study aims to investigate what information is available in pet shops and stores for the reptile owning public and how well this information is imparted. Our findings show that there is a lot of excellent advice on the husbandry of reptiles in some shops while others offer less advice. It is hoped that through this study areas of downfall on primary knowledge can be recognized so that all shops can aspire to the highest levels of information.展开更多
文摘Marine biogenic emission of dimethylsulfi de(DMS)has been well recognized as the main natural source of reduced sulfur to the remote marine atmosphere and has the potential to aff ect climate,especially in the polar regions.We used a global climate model(GCM)to investigate the impact on atmospheric chemistry from a change to the contemporary DMS fl ux to that which has been projected for the late 21 st century.The perturbed simulation corresponded to conditions that pertained to a tripling of equivalent CO 2,which was estimated to occur by year 2090 based on current worst-case greenhouse gas emission scenarios.The changes in zonal mean DMS fl ux were applied to 50°S–70°S Antarctic(ANT)and 65°N–80°N Arctic(ARC)regions.The results indicate that there are clearly diff erent impacts after perturbation in the southern and northern polar regions.Most quantities related to the sulfur cycle show a higher increase in ANT.However,most sulfur compounds have higher peaks in ARC.The perturbation in DMS fl ux leads to an increase of atmospheric DMS of about 45%in ANT and 33.6%in ARC.The sulfur dioxide(SO 2)vertical integral increases around 43%in ANT and 7.5%in ARC.Sulfate(SO 4)vertical integral increases by 17%in ANT and increases around 6%in ARC.Sulfur emissions increases by 21%in ANT and increases by 9.7%in ARC.However,oxidation of DMS by OH increases by 38.2%in ARC and by 15.17%in ANT.Aerosol optical depth(AOD)increases by 4%in the ARC and by 17.5%in the ANT,and increases by 22.8%in austral summer.The importance of the perturbation of the biogenic source to future aerosol burden in polar regions leads to a cooling in surface temperature of 1 K in the ANT and 0.8 K in the ARC.Generally,polar regions in the Antarctic Ocean will have a higher off setting eff ect on warming after DMS fl ux perturbation.
文摘The popularity of keeping reptiles such as snakes and lizards is ever increasing. The health and welfare of these animals depends on the knowledge and understanding of their environmental and nutritional needs. But where does a new owner of these species obtain such information? This study aims to investigate what information is available in pet shops and stores for the reptile owning public and how well this information is imparted. Our findings show that there is a lot of excellent advice on the husbandry of reptiles in some shops while others offer less advice. It is hoped that through this study areas of downfall on primary knowledge can be recognized so that all shops can aspire to the highest levels of information.