Endemic fluorosis disease has become a major geo-environmental health care issue caused by fluoride ion. High-efficiency and low-cost materials to uptake fluoride from water have been a chal-lenge for scientists and e...Endemic fluorosis disease has become a major geo-environmental health care issue caused by fluoride ion. High-efficiency and low-cost materials to uptake fluoride from water have been a chal-lenge for scientists and engineers. Here, we report a low-cost process by utilising low-cost starting materials to develop nanocomposite adsorbents for fluoride uptake from water. Bermuda grass as a starting source material converted into nanocomposite carbon fibers upon heat treatment at 800°C for one hour in Nitrogen atmosphere in the presence of metal oxides. Iron oxide-based nanocomposite (IBNC) is performing high (≈97%) removal of fluoride ion at a contact time of 60 minutes (pH 4) followed by titania-based nanocomposite (TBNC) (≈92%) and micro carbon fiber (≈88%) respectively. The phenomenon of fluoride ion uptake is realised by Freundlich adsorption model, and both adsorption capacity and adsorption intensity for IBNC are higher than those for TBNC and micro carbon fiber.展开更多
文摘Endemic fluorosis disease has become a major geo-environmental health care issue caused by fluoride ion. High-efficiency and low-cost materials to uptake fluoride from water have been a chal-lenge for scientists and engineers. Here, we report a low-cost process by utilising low-cost starting materials to develop nanocomposite adsorbents for fluoride uptake from water. Bermuda grass as a starting source material converted into nanocomposite carbon fibers upon heat treatment at 800°C for one hour in Nitrogen atmosphere in the presence of metal oxides. Iron oxide-based nanocomposite (IBNC) is performing high (≈97%) removal of fluoride ion at a contact time of 60 minutes (pH 4) followed by titania-based nanocomposite (TBNC) (≈92%) and micro carbon fiber (≈88%) respectively. The phenomenon of fluoride ion uptake is realised by Freundlich adsorption model, and both adsorption capacity and adsorption intensity for IBNC are higher than those for TBNC and micro carbon fiber.