In many fingerprint authentication devices, a frame to insert the fingertip or a hollow to put the fingertip is used to avoid the position or rotation misalignment of a newly scanned genuine fingerprint image, when th...In many fingerprint authentication devices, a frame to insert the fingertip or a hollow to put the fingertip is used to avoid the position or rotation misalignment of a newly scanned genuine fingerprint image, when the fingerprint authentication is conducted. Moreover, the misalignment correction by the numerical calculation is indispensable for the fingerprint authentication devices to achieve the high accuracy. In this study, we investigated the effects of misalignment of the scanned genuine fingerprint image with the one used for generating the template on the accuracy in our fingerprint authentication method using the fractional Fourier transform (FRT). As a result, it was found that our method can achieve high authentication accuracy under the condition that the position-misalignment ratio is 17.6% or less and the rotation misalignment (rotation angle) is 28 degrees or less, even if the misalignment correction is not conducted.展开更多
Recently, ubiquitous personal devices with a fingerprint authentication function have been increasing. In such devices, there is almost no possibility of the authentication by impostors unless they are lost or stolen....Recently, ubiquitous personal devices with a fingerprint authentication function have been increasing. In such devices, there is almost no possibility of the authentication by impostors unless they are lost or stolen. However, for example, in the management of entering and leaving a building, not only the fingerprint authentication device but also the other authentication measures, such as an IC card, a key, etc., are generally used. In our previous studies, we have analyzed the authentication accuracy of the fingerprint authentication devices for personal possessions where other authentication measures are not needed. As a result, we made clear that the authentication accuracy in our method has extremely high compared with that in the marketed compact fingerprint authentication products, even if dirt, sebum, etc., are attached to the fingertip and there are scratches. In this study, we analyze the damage ratio of the fingerprint image where the genuine authentication can be conducted without problems, because the fingertip is easily got large cuts. Moreover, we analyze the impostor authentication of the fingerprint authentication devices for public possessions in the two cases of without and with other authentication measures. As a result, it is found that clearer impostor authentication can be achieved in the case of with other authentication measures. In addition, it is found that the damage ratio of the fingerprint image to conduct clearer genuine authentication without the image correction is less than 14.3%.展开更多
The matching accuracy of the fingerprint templates which were generated by our previously proposed data processing method using the fractional Fourier transform (FRT) was analyzed. The minimum error rate (MER) derived...The matching accuracy of the fingerprint templates which were generated by our previously proposed data processing method using the fractional Fourier transform (FRT) was analyzed. The minimum error rate (MER) derived from the false acceptance rate (FAR) and the false rejection rate (FRR) is the criterion of the matching accuracy in this study, and was obtained statistically by the peak value of the normalized cross-correlation function between the fingerprint template and the intensity FRT of the subject’s fingerprint. In our analysis, the fingerprint template was obtained as the intensity FRT of one-dimensional (1D) finite rectangular wave by which a line of a real fingerprint image is modeled. Moreover, various modified 1D finite rectangular waves were generated to derive the FAR. Furthermore, the 1D finite rectangular wave with random noise regarded as dirt of a fingerprint and the one with random vanishing ridges regarded as damage of a fingerprint were generated to derive the FRR. As a result, it was clarified that fingerprint templates generated by our data processing method using the FRT could provide high matching accuracy in the fingerprint authentication from the viewpoint of the MER.展开更多
In the light of a limited number of related studies, a new data processing method in fingerprint authentication using the fractional Fourier transform (FRT) was proposed for registered fingerprint data. In this propos...In the light of a limited number of related studies, a new data processing method in fingerprint authentication using the fractional Fourier transform (FRT) was proposed for registered fingerprint data. In this proposal, protection of personal information was also taken into account. We applied the FRT instead of the conventional Fourier transform (FT) which has been being used as one of the representative fingerprint authentication algorithm. Our method led to solve the problem of current registration method and the robustness was verified. In this study, a modeled fingerprint image instead of the original raw fingerprint images was analyzed in detail to make the characteristic clear. As one dimensional (1D) modeled fingerprint image, we used the finite rectangular wave which is regarded as the simplification of the grayscale distribution in an arbitrary scanned line of the raw fingerprint images. As a result, it was clarified that the data processed by the FRT provides higher safety than the case processed by the FT, because it is difficult to specify the orders from the intensity distribution of FRTs (the intensity FRTs) when the combination of the various FRT’s order at every scanned line is used.展开更多
文摘In many fingerprint authentication devices, a frame to insert the fingertip or a hollow to put the fingertip is used to avoid the position or rotation misalignment of a newly scanned genuine fingerprint image, when the fingerprint authentication is conducted. Moreover, the misalignment correction by the numerical calculation is indispensable for the fingerprint authentication devices to achieve the high accuracy. In this study, we investigated the effects of misalignment of the scanned genuine fingerprint image with the one used for generating the template on the accuracy in our fingerprint authentication method using the fractional Fourier transform (FRT). As a result, it was found that our method can achieve high authentication accuracy under the condition that the position-misalignment ratio is 17.6% or less and the rotation misalignment (rotation angle) is 28 degrees or less, even if the misalignment correction is not conducted.
文摘Recently, ubiquitous personal devices with a fingerprint authentication function have been increasing. In such devices, there is almost no possibility of the authentication by impostors unless they are lost or stolen. However, for example, in the management of entering and leaving a building, not only the fingerprint authentication device but also the other authentication measures, such as an IC card, a key, etc., are generally used. In our previous studies, we have analyzed the authentication accuracy of the fingerprint authentication devices for personal possessions where other authentication measures are not needed. As a result, we made clear that the authentication accuracy in our method has extremely high compared with that in the marketed compact fingerprint authentication products, even if dirt, sebum, etc., are attached to the fingertip and there are scratches. In this study, we analyze the damage ratio of the fingerprint image where the genuine authentication can be conducted without problems, because the fingertip is easily got large cuts. Moreover, we analyze the impostor authentication of the fingerprint authentication devices for public possessions in the two cases of without and with other authentication measures. As a result, it is found that clearer impostor authentication can be achieved in the case of with other authentication measures. In addition, it is found that the damage ratio of the fingerprint image to conduct clearer genuine authentication without the image correction is less than 14.3%.
文摘The matching accuracy of the fingerprint templates which were generated by our previously proposed data processing method using the fractional Fourier transform (FRT) was analyzed. The minimum error rate (MER) derived from the false acceptance rate (FAR) and the false rejection rate (FRR) is the criterion of the matching accuracy in this study, and was obtained statistically by the peak value of the normalized cross-correlation function between the fingerprint template and the intensity FRT of the subject’s fingerprint. In our analysis, the fingerprint template was obtained as the intensity FRT of one-dimensional (1D) finite rectangular wave by which a line of a real fingerprint image is modeled. Moreover, various modified 1D finite rectangular waves were generated to derive the FAR. Furthermore, the 1D finite rectangular wave with random noise regarded as dirt of a fingerprint and the one with random vanishing ridges regarded as damage of a fingerprint were generated to derive the FRR. As a result, it was clarified that fingerprint templates generated by our data processing method using the FRT could provide high matching accuracy in the fingerprint authentication from the viewpoint of the MER.
文摘In the light of a limited number of related studies, a new data processing method in fingerprint authentication using the fractional Fourier transform (FRT) was proposed for registered fingerprint data. In this proposal, protection of personal information was also taken into account. We applied the FRT instead of the conventional Fourier transform (FT) which has been being used as one of the representative fingerprint authentication algorithm. Our method led to solve the problem of current registration method and the robustness was verified. In this study, a modeled fingerprint image instead of the original raw fingerprint images was analyzed in detail to make the characteristic clear. As one dimensional (1D) modeled fingerprint image, we used the finite rectangular wave which is regarded as the simplification of the grayscale distribution in an arbitrary scanned line of the raw fingerprint images. As a result, it was clarified that the data processed by the FRT provides higher safety than the case processed by the FT, because it is difficult to specify the orders from the intensity distribution of FRTs (the intensity FRTs) when the combination of the various FRT’s order at every scanned line is used.