为了解决金属表面缺陷检测的漏检、误检等问题,提出了一种改进YOLOv3算法。首先,使用动态激活函数替换主干特征提取网络中所有残差块的激活函数,并加入了混合注意力机制,强化其对复杂缺陷目标的特征提取能力。然后,在特征金字塔网络部...为了解决金属表面缺陷检测的漏检、误检等问题,提出了一种改进YOLOv3算法。首先,使用动态激活函数替换主干特征提取网络中所有残差块的激活函数,并加入了混合注意力机制,强化其对复杂缺陷目标的特征提取能力。然后,在特征金字塔网络部分新增一个104×104的特征层,并将浅层网络与深层网络进行逐层特征融合,增强算法对小缺陷目标检测的敏感性。最后,利用K-Means++聚类算法替换K-Means聚类算法,筛选出适用于金属表面缺陷检测的最优先验框尺寸,使目标定位更加准确。实验结果表明,改进YOLOv3算法的每秒检测帧数(frames per second,FPS)可达到32.3,平均精度均值(mean average precision,mAP)可达到78.69%,检测性能得到了明显提升。展开更多
文摘为了解决金属表面缺陷检测的漏检、误检等问题,提出了一种改进YOLOv3算法。首先,使用动态激活函数替换主干特征提取网络中所有残差块的激活函数,并加入了混合注意力机制,强化其对复杂缺陷目标的特征提取能力。然后,在特征金字塔网络部分新增一个104×104的特征层,并将浅层网络与深层网络进行逐层特征融合,增强算法对小缺陷目标检测的敏感性。最后,利用K-Means++聚类算法替换K-Means聚类算法,筛选出适用于金属表面缺陷检测的最优先验框尺寸,使目标定位更加准确。实验结果表明,改进YOLOv3算法的每秒检测帧数(frames per second,FPS)可达到32.3,平均精度均值(mean average precision,mAP)可达到78.69%,检测性能得到了明显提升。