The spontaneous emission property ofΛ-type three-level atom driven by the bichromatic field in the anisotropic double-band photonic crystal is calculated by n-times iteration method.The influence of different paramet...The spontaneous emission property ofΛ-type three-level atom driven by the bichromatic field in the anisotropic double-band photonic crystal is calculated by n-times iteration method.The influence of different parameters on atomic spontaneous emission is studied,and the phenomena of atomic spontaneous emission are explained in the dressed state representation.It is found that the spontaneous emission spectra of the atom driven by the bichromatic field presents a multi-peak comb structure.The position of the emission peak is determined by the initial state of the atom,and the interval between the neighboring emission peaks is the detuningδof the bichromatic field.When the ratio between Rabi frequency intensity and the detuningδof the bichromatic field remains unchanged,the intensity of each emitted peak remains invariant.The spontaneously emitted peak can be annihilated in the band gap and enhanced near the band edge in the anisotropic photonic crystals.Meanwhile,we also observe the fluorescence quenching phenomenon in the spontaneous emission spectra.The research in this paper provides the theoretical guidance for the control of atomic spontaneous emission.展开更多
The absorption–dispersion properties of a microwave-driven five-level atom embedded in an isotropic photonic bandgap(PBG) have been studied. Due to the singular density of modes(DOM) in the isotropic PBG and the dyna...The absorption–dispersion properties of a microwave-driven five-level atom embedded in an isotropic photonic bandgap(PBG) have been studied. Due to the singular density of modes(DOM) in the isotropic PBG and the dynamically coherence induced by the coupling fields, modified reservoir-induced transparency and quantum interference-induced transparency emerge simultaneously. Their interaction leads to ultra-narrow spectral structure. As a result of closed-loop configuration, these features can be manipulated by the amplitudes and relative phase of the coherently driven fields. The position and width of PBG also have an influence on the spectra. The theoretical studies can provide us with more efficient methods to control the atomic absorption–dispersion properties, which have applications in optical switching and slow light.展开更多
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant No.20220101031JC)。
文摘The spontaneous emission property ofΛ-type three-level atom driven by the bichromatic field in the anisotropic double-band photonic crystal is calculated by n-times iteration method.The influence of different parameters on atomic spontaneous emission is studied,and the phenomena of atomic spontaneous emission are explained in the dressed state representation.It is found that the spontaneous emission spectra of the atom driven by the bichromatic field presents a multi-peak comb structure.The position of the emission peak is determined by the initial state of the atom,and the interval between the neighboring emission peaks is the detuningδof the bichromatic field.When the ratio between Rabi frequency intensity and the detuningδof the bichromatic field remains unchanged,the intensity of each emitted peak remains invariant.The spontaneously emitted peak can be annihilated in the band gap and enhanced near the band edge in the anisotropic photonic crystals.Meanwhile,we also observe the fluorescence quenching phenomenon in the spontaneous emission spectra.The research in this paper provides the theoretical guidance for the control of atomic spontaneous emission.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11447232 and 11204367)
文摘The absorption–dispersion properties of a microwave-driven five-level atom embedded in an isotropic photonic bandgap(PBG) have been studied. Due to the singular density of modes(DOM) in the isotropic PBG and the dynamically coherence induced by the coupling fields, modified reservoir-induced transparency and quantum interference-induced transparency emerge simultaneously. Their interaction leads to ultra-narrow spectral structure. As a result of closed-loop configuration, these features can be manipulated by the amplitudes and relative phase of the coherently driven fields. The position and width of PBG also have an influence on the spectra. The theoretical studies can provide us with more efficient methods to control the atomic absorption–dispersion properties, which have applications in optical switching and slow light.