Strangeon stars,which are proposed to describe the nature of pulsar-like compact stars,have passed various observational tests.The maximum mass of a non-rotating strangeon star could be high,which implies that the rem...Strangeon stars,which are proposed to describe the nature of pulsar-like compact stars,have passed various observational tests.The maximum mass of a non-rotating strangeon star could be high,which implies that the remnants of binary strangeon star mergers could even be long-lived massive strangeon stars.We study rigidly rotating strangeon stars in the slowly rotating approximation,using the Lennard-Jones model for the equation of state.Rotation can significantly increase the maximum mass of strangeon stars with unchanged baryon numbers,enlarging the mass-range of long-lived strangeon stars.During spin-down after merger,the decrease of radius of the remnant will lead to the release of gravitational energy.Taking into account the efficiency of converting the gravitational energy luminosity to the observed X-ray luminosity,we find that the gravitational energy could provide an alternative energy source for the plateau emission of X-ray afterglow.The fitting results of X-ray plateau emission of some short gamma-ray bursts suggest that the magnetic dipole field strength of the remnants can be much smaller than that of expected when the plateau emission is powered only by spin-down luminosity of magnetars.展开更多
We have carried out the Galactic Plane Pulsar Snapshot(GPPS)survey by using the Five-hundred-meter Aperture Spherical radio Telescope(FAST),the most sensitive systematic pulsar survey in the Galactic plane.In addition...We have carried out the Galactic Plane Pulsar Snapshot(GPPS)survey by using the Five-hundred-meter Aperture Spherical radio Telescope(FAST),the most sensitive systematic pulsar survey in the Galactic plane.In addition to more than 500 pulsars already discovered through normal periodical search,we report here the discovery of 76 new transient radio sources with sporadic strong pulses,detected by using the newly developed module for a sensitive single-pulse search.Their small DM values suggest that they all are Galactic rotating radio transients(RRATs).They show different properties in the follow-up observations.More radio pulses have been detected from 26 transient radio sources but no periods can be found due to a limited small number of pulses from all FAST observations.The followup observations show that 16 transient sources are newly identified as being the prototypes of RRATs with a period already determined from more detected sporadic pulses,and 10 sources are extremely nulling pulsars,and 24 sources are weak pulsars with sparse strong pulses.On the other hand,48 previously known RRATs have been detected by the FAST,either during verification observations for the GPPS survey or through targeted observations of applied normal FAST projects.Except for one RRAT with four pulses detected in a session of 5-minute observation and four RRATs with only one pulse detected in a session,sensitive FAST observations reveal that 43 RRATs are just generally weak pulsars with sporadic strong pulses or simply very nulling pulsars,so that the previously known RRATs always have an extreme emission state together with a normal hardly detectable weak emission state.This is echoed by the two normal pulsars J1938+2213 and J1946+1449 with occasional brightening pulses.Though strong pulses of RRATs are very outstanding in the energy distribution,their polarization angle variations follow the polarization angle curve of the averaged normal pulse profile,suggesting that the predominant sparse pulses of RRATs are emitted in the same region with the same geometry as normal weak pulsars.展开更多
Fast radio bursts(FRBs) are highly dispersed millisecond-duration radio bursts,[1,2]of which the physical origin is still not fully understood. FRB 20201124A is one of the most actively repeating FRBs. In this paper, ...Fast radio bursts(FRBs) are highly dispersed millisecond-duration radio bursts,[1,2]of which the physical origin is still not fully understood. FRB 20201124A is one of the most actively repeating FRBs. In this paper, we present the collection of 1863 burst dynamic spectra of FRB 20201124A measured with the Five-hundred-meter Aperture Spherical radio Telescope(FAST). The current collection, taken from the observation during the FRB active phase from April to June 2021, is the largest burst sample detected for any FRB so far. The standard PSRFITs format is adopted, including dynamic spectra of the burst, and the time information of the dynamic spectra, in addition, mask files help readers to identify the pulse positions are also provided. The dataset is available in Science Data Bank, with the link https://www.doi.org/10.57760/sciencedb.j00113.00076.展开更多
The Five-hundred-meter Aperture Spherical radio Telescope(FAST) has the potential to discover many new pulsars and new phenomena. In this paper we mainly concentrate on how FAST can impact study of the pulsar emission...The Five-hundred-meter Aperture Spherical radio Telescope(FAST) has the potential to discover many new pulsars and new phenomena. In this paper we mainly concentrate on how FAST can impact study of the pulsar emission mechanism and magnetospheric dynamics. Several observational programs heading to this direction are reviewed. To make full use of the superior performance of FAST and maximize the scientific outcome, these programs can be arranged in different phases of FAST according to their demands for observational conditions. We suggest that programs can be performed following the test phase, which are observations of multifrequency mean pulse profiles, anomalous X-ray pulsars(AXPs)/soft gamma-ray repeaters(SGRs), mode changing, drifting subpulse and nulling. The long-term monitoring can be carried out for mode changing, AXPs/SGRs and precessional pulsars. Others programs, including polarization observations of radio and γ-ray pulsars, searching for weak pulse components, and multifrequency observations of subpulse drifting, microstructure and giant pulses, can be conducted in all the normal operating phases(the first and second phases). These programs will push forward the frontier in this field in different respects. The search for sub-millisecond pulsars and follow-up observations of their emission properties are very important projects for FAST, but they may be covered by other papers in this mini-volume; therefore,they are not discussed here.展开更多
The Five-hundred-meter Aperture Spherical radio Telescope(FAST) will become one of the world-leading telescopes for pulsar timing array(PTA) research. The primary goals for PTAs are to detect(and subsequently study) u...The Five-hundred-meter Aperture Spherical radio Telescope(FAST) will become one of the world-leading telescopes for pulsar timing array(PTA) research. The primary goals for PTAs are to detect(and subsequently study) ultra-low-frequency gravitational waves, to develop a pulsar-based time standard and to improve solar system planetary ephemerides. FAST will have the sensitivity to observe known pulsars with significantly improved signal-to-noise ratios and will discover a large number of currently unknown pulsars. We describe how FAST will contribute to PTA research and show that jitter-and timing-noise will be the limiting noise processes for FAST data sets. Jitter noise will limit the timing precision achievable over data spans of a few years while timing noise will limit the precision achievable over many years.展开更多
Discovery of pulsars is one of the main goals for large radio telescopes.The Five-hundredmeter Aperture Spherical radio Telescope(FAST),that incorporates an L-band 19-beam receiver with a system temperature of about 2...Discovery of pulsars is one of the main goals for large radio telescopes.The Five-hundredmeter Aperture Spherical radio Telescope(FAST),that incorporates an L-band 19-beam receiver with a system temperature of about 20 K,is the most sensitive radio telescope utilized for discovering pulsars.We designed the snapshot observation mode for a FAST key science project,the Galactic Plane Pulsar Snapshot(GPPS)survey,in which every four nearby pointings can observe a cover of a sky patch of 0.1575 square degrees through beam-switching of the L-band 19-beam receiver.The integration time for each pointing is 300 seconds so that the GPPS observations for a cover can be made in 21 minutes.The goal of the GPPS survey is to discover pulsars within the Galactic latitude of±10∘from the Galactic plane,and the highest priority is given to the inner Galaxy within±5∘.Up to now,the GPPS survey has discovered 201 pulsars,including currently the faintest pulsars which cannot be detected by other telescopes,pulsars with extremely high dispersion measures(DMs)which challenge the currently widely used models for the Galactic electron density distribution,pulsars coincident with supernova remnants,40 millisecond pulsars,16 binary pulsars,some nulling and mode-changing pulsars and rotating radio transients(RRATs).The follow-up observations for confirmation of new pulsars have polarization-signals recorded for polarization profiles of the pulsars.Re-detection of previously known pulsars in the survey data also leads to significant improvements in parameters for 64 pulsars.The GPPS survey discoveries are published and will be updated at http://zmtt.bao.ac.cn/GPPS/.展开更多
Resonant cyclotron scattering (RCS) in pulsar magnetospheres is considered. The photon diffusion equation (Kompaneets equation) for RCS is derived. The photon system is modeled three dimensionally. Numerical calcu...Resonant cyclotron scattering (RCS) in pulsar magnetospheres is considered. The photon diffusion equation (Kompaneets equation) for RCS is derived. The photon system is modeled three dimensionally. Numerical calculations show that there exist not only up scattering but also down scattering of RCS, depending on the parameter space. RCS's possible applications to spectral energy distributions of magnetar candidates and radio quiet isolated neutron stars (INSs) are pointed out. The optical/UV excess of INSs may be caused by the down scattering of RCS. The calculations for RX J1856.5-3754 and RX J0720.4-3125 are presented and compared with their observational data. In our model, the INSs are proposed to be normal neutron stars, although the quark star hypothesis is still possible. The low pulsation amplitude of INSs is a natural consequence in the RCS model.展开更多
Flux densities are fundamental observational parameters that describe a pulsar.In the current pulsar catalogue,27% of the listed radio pulsars have no flux density measurement in the 20 cm observing band.Here,we prese...Flux densities are fundamental observational parameters that describe a pulsar.In the current pulsar catalogue,27% of the listed radio pulsars have no flux density measurement in the 20 cm observing band.Here,we present the first such measurements for 32 pulsars observed employing the Parkes radio telescope.We have used both archival and new observations to make these measurements.Various schemes exist for measuring flux densities and we show how the measured flux densities vary between these methods and how the presence of radio-frequency interference will bias the flux density measurements.展开更多
The state of supranuclear matter in compact stars remains puzzling,and it is argued that pulsars could be strangeon stars.The consequences of merging double strangeon stars are worth exploring,especially in the new er...The state of supranuclear matter in compact stars remains puzzling,and it is argued that pulsars could be strangeon stars.The consequences of merging double strangeon stars are worth exploring,especially in the new era of multi-messenger astronomy.To develop the"strangeon kilonova"scenario proposed in Paper I,we make a qualitative description about the evolution of ejecta and light curves for merging double strangeon stars.In the hot environment of the merger,the strangeon nuggets ejected by tidal disruption and hydrodynamical squeezing would suffer from evaporation,in which process particles,such as strangeons,neutrons and protons,are emitted.Taking into account both the evaporation of strangeon nuggets and the decay of strangeons,most of the strangeon nuggets would turn into neutrons and protons,within dozens of milliseconds after being ejected.The evaporation rates of different particles depend on temperature,and we find that the ejecta could end up with two components,with high and low opacity respectively.The high opacity component would be in the directions around the equatorial plane,and the low opacity component would be in a broad range of angular directions.The bolometric light curves show that the spin-down power of the long-lived remnant would account for the whole emission of kilonova AT2017gfo associated with GW170817,if the total ejected mass 10^(-3)M⊙.The detailed picture of merging double strangeon stars is expected to be tested by future numerical simulations.展开更多
The neutrino burst detected during supernova SN 1987A is explained in a strangeon star model, in which it is proposed that a pulsar-like compact object is composed of strangeons (strangeon: an abbreviation for "str...The neutrino burst detected during supernova SN 1987A is explained in a strangeon star model, in which it is proposed that a pulsar-like compact object is composed of strangeons (strangeon: an abbreviation for "strange nucleon"). A nascent strangeon star's initial internal energy is calculated, with the inclusion of pion excitation (energy around 1053 erg, comparable to the gravitational binding energy of a collapsed core). A liquid-solid phase transition at temperature - 1 - 2 MeV may occur only a few tens of seconds after core collapse, and the thermal evolution of a strangeon star is then modeled. It is found that the neutrino burst observed from SN 1987A can be reproduced in such a cooling model.展开更多
The state of supranuclear matter in compact stars remains puzzling, and it is argued that pul- sars could be strangeon stars. What would happen if binary strangeon stars merge? This kind of merger could result in the...The state of supranuclear matter in compact stars remains puzzling, and it is argued that pul- sars could be strangeon stars. What would happen if binary strangeon stars merge? This kind of merger could result in the formation of a hyper-massive strangeon star, accompanied by bursts of gravitational waves and electromagnetic radiation (and even a strangeon kilonova explained in the paper). The tidal polarizability of binary strangeon stars is different from that of binary neutron stars, because a strangeon star is self-bound on the surface by the fundamental strong force while a neutron star by the gravity, and their equations of state are different. Our calculation shows that the tidal polarizability of merging bi- nary strangeon stars is favored by GW170817. Three kinds of kilonovae (i.e., of neutron, quark and strangeon) are discussed, and the light curve of the kilonova AT 2017gfo following GW170817 could be explained by considering the decaying strangeon nuggets and remnant star spin-down. Additionally, the energy ejected to the fireball around the nascent remnant strangeon star, being manifested as a gamma-ray burst, is calculated. It is found that, after a prompt burst, an X-ray plateau could follow in a timescale of 102 - 103 s. Certainly, the results could be tested also by further observational synergies between gravitational wave detectors (e.g., Advanced LIGO) and X-ray telescopes (e.g., the Chinese HXMT satellite and eXTP mission), and especially if the detected gravitational wave form is checked by peculiar equations of state provided by the numerical relativistical simulation.展开更多
The very small braking index of PSR J1734-3333, n = 0.9 ± 0.2, chal- lenges the current theories of braking mechanisms in pulsars. We present a possible interpretation that this pulsar is surrounded by a fall-hac...The very small braking index of PSR J1734-3333, n = 0.9 ± 0.2, chal- lenges the current theories of braking mechanisms in pulsars. We present a possible interpretation that this pulsar is surrounded by a fall-hack disk and braked by it. A modified braking torque is proposed based on the competition between the magnetic energy density of the pulsar and the kinetic energy density of the fall-back disk. With this torque, a self-similar disk can fit all the observed parameters of PSR J1734-3333 with natural initial values of parameters. In this regime, the star will evolve to the re- gion having anomalous X-ray pulsars and soft gamma repeaters in the P -/5 diagram in about 20 000 years and stay there for a very long time. The mass of the disk around PSR J1734-3333 in our model is about 10M similar to the observed mass of the disk around AXP 4U 0142+61.展开更多
X-ray dim isolated neutron stars are peculiar pulsar-like objects, characterized by their Planck-like spectrum. In studying their spectral energy distributions, optical/ultraviolet (UV) excess is a long standing pro...X-ray dim isolated neutron stars are peculiar pulsar-like objects, characterized by their Planck-like spectrum. In studying their spectral energy distributions, optical/ultraviolet (UV) excess is a long standing problem. Recently Kaplan et al. measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may be due to contributions from the bremsstrahlung emission of the electron system in addition to the RCS process.展开更多
The Five-hundred-meter Aperture Spherical radio Telescope(FAST)passed its national acceptance inspection on 2020 January 11.This special issue includes a total of 15 papers,which are selected to introduce the status o...The Five-hundred-meter Aperture Spherical radio Telescope(FAST)passed its national acceptance inspection on 2020 January 11.This special issue includes a total of 15 papers,which are selected to introduce the status of FAST’s performance and demonstrate the key technologies applied to FAST.The presented performance parameters can provide an important reference for scientists to propose observations with FAST.The key technologies presented in these papers include design and implementation in the measurement and control system,electromagnetic compatibility system,and receiver system.Finally,scientific achievements obtained by FAST during the commissioning phase are also reported.展开更多
The fast radio burst,FRB 171019,was relatively bright when discovered first by ASKAP but was identified as a repeater with three faint bursts detected later by GBT and CHIME.These observations lead to the discussion o...The fast radio burst,FRB 171019,was relatively bright when discovered first by ASKAP but was identified as a repeater with three faint bursts detected later by GBT and CHIME.These observations lead to the discussion of whether the first bright burst shares the same mechanism with the following repeating bursts.A model of binary neutron star merger is proposed for FRB 171019,in which the first bright burst occurred during the merger event,while the subsequent repeating bursts are starquake-induced,and generally fainter,as the energy release rate for the starquakes can hardly exceed that of the catastrophic merger event.This scenario is consistent with the observation that no later burst detected is as bright as the first one.展开更多
Efforts are made to understand the timing behaviors (e.g., the jumps in the projected pulsar semimajor axis at the periastron passages) observed in the 13-year monitoring of PSR B1259-63. Planet-like objects are sug...Efforts are made to understand the timing behaviors (e.g., the jumps in the projected pulsar semimajor axis at the periastron passages) observed in the 13-year monitoring of PSR B1259-63. Planet-like objects are suggested to orbit around the Be star, which may gravitationally perturb the (probably low mass) pulsar when it passes through periastron. An accretion disk should exist outside the pulsar's light cylinder, which creates a spindown torque on the pulsar due to the propeller effect. The observed negative braking index and the discrepant timing residuals close to periastron could be related to the existence of a disk with a varying accretion rate. A speculation is presented that the accretion rate may increase on a long timescale in order to explain the negative braking index.展开更多
As the third paper in the multiple-part series,we report the statistical properties of radio bursts detected from the repeating fast radio burst(FRB)source FRB 20201124A with the Five-hundred-meter Aperture Spherical ...As the third paper in the multiple-part series,we report the statistical properties of radio bursts detected from the repeating fast radio burst(FRB)source FRB 20201124A with the Five-hundred-meter Aperture Spherical radio Telescope during an extremely active episode between the 25th and 28th of September 2021(UT).We focus on the polarization properties of536 bright bursts with S/N>50.We found that the Faraday rotation measures(RMs)monotonically dropped from-579to-605 rad m^(-2)in the 4 day window.The RM values were compatible with the values(-300 to-900 rad m^(-2))reported 4 months ago.However,the RM evolution rate in the current observation window was at least an order of magnitude smaller than the one(~500 rad m^(-2)day^(-1))previously reported during the rapid RM-variation phase,but is still higher than the one(≤1 rad m^(-2)day^(-1))during the later RM no-evolution phase.The bursts of FRB 20201124A were highly polarized with the total degree of polarization(circular plus linear)greater than 90%for more than 90%of all bursts.The distribution of linear polarization position angles(PAs),degree of linear polarization(L/I)and degree of circular polarization(V/I)can be characterized with unimodal distribution functions.During the observation window,the distributions became wider with time,i.e.,with larger scatter,but the centroids of the distribution functions remained nearly constant.For individual bursts,significant PA variations(confidence level 5σ)were observed in 33%of all bursts.The polarization of single pulses seems to follow certain complex trajectories on the Poincarésphere,which may shed light on the radiation mechanism at the source or the plasma properties along the path of FRB propagation.展开更多
Hard X-rays above 10 keV are detected from several anomalous X-ray pul- sars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of e...Hard X-rays above 10 keV are detected from several anomalous X-ray pul- sars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J 170849-400910, 1E 1547.0- 5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Triimper et al., showing that the accretion scenario could be compatible with X- ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at -200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs.展开更多
Several X-ray-dim isolated neutron stars (XDINSs), also known as the Magnificent Seven, exhibit a Planck-like soft X-ray spectrum. In the optical/ultraviolet (UV) band, there is an excess of radiation compared to ...Several X-ray-dim isolated neutron stars (XDINSs), also known as the Magnificent Seven, exhibit a Planck-like soft X-ray spectrum. In the optical/ultraviolet (UV) band, there is an excess of radiation compared to an extrapolation from the X-ray spectrum. However, the majority exhibits "spec- tral deviations": the fact that there is more flux at longer wavelengths makes spectra deviate from the Rayleigh-Jeans law. A model of bremsstrahlung emission from a nonuniform plasma atmosphere is proposed in the regime of a strangeon star to explain the optical/UV excess and its spectral devi- ation as well as X-ray pulsation. The atmosphere is on the surface of strangeon matter, which has negligible emission, and is formed by the accretion of ISM-fed debris disk matter moving along the magnetic field lines to near the polar caps. These particles may spread out of the polar regions which makes the atmosphere non-uniform. The modeled electron temperatures are ~ 100 - 200 eV with radi- ation radii Ropt ~ 5 - 14km. The spectra of five sources (RX J0720.4-3125, RX J0806.4-4123, RX J1308.6+2127, RX J1605.3+3249, RX J1856.5-3754) from optical/UV to X-ray bands can be fitted well by the radiative model, and exhibit Gaussian absorption lines at ~ 100 - 500 eV as would be expected. Furthermore, the surroundings (i.e., fallback disks or dusty belts) of XDINSs could be tested by future infrared/submillimeter observations.展开更多
It is conjectured that coherent re-emission of cyclotron resonance absorption could result in pulsar giant pulses.This conjecture seems reasonable as it can naturally explain the distribution of pulsars with giant pul...It is conjectured that coherent re-emission of cyclotron resonance absorption could result in pulsar giant pulses.This conjecture seems reasonable as it can naturally explain the distribution of pulsars with giant pulses on the P-P diagram.展开更多
基金supported by the National SKA Program of China(Nos.2020SKA0120300,2020SKA0120100)the Outstanding Young and Middle-aged Science and Technology Innovation Teams from Hubei colleges and universities(No.T2021026)the Young Top-notch Talent Cultivation Program of Hubei Province,and the Key Laboratory Opening Fund(MOE)of China(grant No.QLPL2021P01)。
文摘Strangeon stars,which are proposed to describe the nature of pulsar-like compact stars,have passed various observational tests.The maximum mass of a non-rotating strangeon star could be high,which implies that the remnants of binary strangeon star mergers could even be long-lived massive strangeon stars.We study rigidly rotating strangeon stars in the slowly rotating approximation,using the Lennard-Jones model for the equation of state.Rotation can significantly increase the maximum mass of strangeon stars with unchanged baryon numbers,enlarging the mass-range of long-lived strangeon stars.During spin-down after merger,the decrease of radius of the remnant will lead to the release of gravitational energy.Taking into account the efficiency of converting the gravitational energy luminosity to the observed X-ray luminosity,we find that the gravitational energy could provide an alternative energy source for the plateau emission of X-ray afterglow.The fitting results of X-ray plateau emission of some short gamma-ray bursts suggest that the magnetic dipole field strength of the remnants can be much smaller than that of expected when the plateau emission is powered only by spin-down luminosity of magnetars.
基金This project,as one of five key projects,is being carried out by using FAST,a Chinese national mega-science facility built and operated by the National Astronomical Observatories,Chinese Academy of Sciencessupported by the National Natural Science Foundation of China(NSFC,Nos.11988101 and 11833009)+5 种基金the Key Research Program of the Chinese Academy of Sciences(grant No.QYZDJ-SSWSLH021)supported by the Cultivation Project for the FAST scientific Payoff and Research Achievement of CAMS-CASsupported by NSFC No.12133004,partially supported by NSFC No.U1731120partially supported by the NSFC No.11873058,partially supported by NSFC No.U2031115partially supported by the National SKA program of China No.2020SKA0120200partially supported by the Guangzhou Science and Technology Project No.202102010466。
文摘We have carried out the Galactic Plane Pulsar Snapshot(GPPS)survey by using the Five-hundred-meter Aperture Spherical radio Telescope(FAST),the most sensitive systematic pulsar survey in the Galactic plane.In addition to more than 500 pulsars already discovered through normal periodical search,we report here the discovery of 76 new transient radio sources with sporadic strong pulses,detected by using the newly developed module for a sensitive single-pulse search.Their small DM values suggest that they all are Galactic rotating radio transients(RRATs).They show different properties in the follow-up observations.More radio pulses have been detected from 26 transient radio sources but no periods can be found due to a limited small number of pulses from all FAST observations.The followup observations show that 16 transient sources are newly identified as being the prototypes of RRATs with a period already determined from more detected sporadic pulses,and 10 sources are extremely nulling pulsars,and 24 sources are weak pulsars with sparse strong pulses.On the other hand,48 previously known RRATs have been detected by the FAST,either during verification observations for the GPPS survey or through targeted observations of applied normal FAST projects.Except for one RRAT with four pulses detected in a session of 5-minute observation and four RRATs with only one pulse detected in a session,sensitive FAST observations reveal that 43 RRATs are just generally weak pulsars with sporadic strong pulses or simply very nulling pulsars,so that the previously known RRATs always have an extreme emission state together with a normal hardly detectable weak emission state.This is echoed by the two normal pulsars J1938+2213 and J1946+1449 with occasional brightening pulses.Though strong pulses of RRATs are very outstanding in the energy distribution,their polarization angle variations follow the polarization angle curve of the averaged normal pulse profile,suggesting that the predominant sparse pulses of RRATs are emitted in the same region with the same geometry as normal weak pulsars.
基金supported by the National SKA Program of China (Grant Nos. 2020SKA0120100 and 2020SKA0120200)the National Natural Science Foundation of China (Grant Nos. 12041304, 11873067, 11988101, 12041303, 11725313, 11725314, 11833003, 12003028, 12041306, 12103089, U2031209, U2038105, and U1831207)+8 种基金the National Key Research and Development Program of China (Grant Nos. 2019YFA0405100, 2017YFA0402602, 2018YFA0404204, and 2016YFA0400801)Key Research Program of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH021)Natural Science Foundation of Jiangsu Province (Grant No. BK20211000)Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CAS, the Strategic Priority Research Program on Space Science, the Western Light Youth Project of Chinese Academy of Sciences (Grant Nos. XDA15360000, XDA15052700, and XDB23040400)funding from the MaxPlanck Partner Group, the science research grants from the China Manned Space Project (Grant Nos. CMS-CSST2021-B11 and CMS-CSST-2021-A11)PKU development (Grant No. 7101502590)support from the XPLORER PRIZEsupported by Fundamental Research Funds for the Central Universities (Grant No. 14380046)the Program for Innovative Talents, Entrepreneur in Jiangsu。
文摘Fast radio bursts(FRBs) are highly dispersed millisecond-duration radio bursts,[1,2]of which the physical origin is still not fully understood. FRB 20201124A is one of the most actively repeating FRBs. In this paper, we present the collection of 1863 burst dynamic spectra of FRB 20201124A measured with the Five-hundred-meter Aperture Spherical radio Telescope(FAST). The current collection, taken from the observation during the FRB active phase from April to June 2021, is the largest burst sample detected for any FRB so far. The standard PSRFITs format is adopted, including dynamic spectra of the burst, and the time information of the dynamic spectra, in addition, mask files help readers to identify the pulse positions are also provided. The dataset is available in Science Data Bank, with the link https://www.doi.org/10.57760/sciencedb.j00113.00076.
基金supported by the National Basic Research Program of China (973 program, Grant No. 2012CB821800)the National Natural Science Foundation of China (Grant Nos. 11573008, 11178001, 11225314, 11303069 and 11373011)
文摘The Five-hundred-meter Aperture Spherical radio Telescope(FAST) has the potential to discover many new pulsars and new phenomena. In this paper we mainly concentrate on how FAST can impact study of the pulsar emission mechanism and magnetospheric dynamics. Several observational programs heading to this direction are reviewed. To make full use of the superior performance of FAST and maximize the scientific outcome, these programs can be arranged in different phases of FAST according to their demands for observational conditions. We suggest that programs can be performed following the test phase, which are observations of multifrequency mean pulse profiles, anomalous X-ray pulsars(AXPs)/soft gamma-ray repeaters(SGRs), mode changing, drifting subpulse and nulling. The long-term monitoring can be carried out for mode changing, AXPs/SGRs and precessional pulsars. Others programs, including polarization observations of radio and γ-ray pulsars, searching for weak pulse components, and multifrequency observations of subpulse drifting, microstructure and giant pulses, can be conducted in all the normal operating phases(the first and second phases). These programs will push forward the frontier in this field in different respects. The search for sub-millisecond pulsars and follow-up observations of their emission properties are very important projects for FAST, but they may be covered by other papers in this mini-volume; therefore,they are not discussed here.
基金support from the Australian Research Council (ARC) Future Fellowship programmesupport from the National Natural Science Foundation of China (11225314)
文摘The Five-hundred-meter Aperture Spherical radio Telescope(FAST) will become one of the world-leading telescopes for pulsar timing array(PTA) research. The primary goals for PTAs are to detect(and subsequently study) ultra-low-frequency gravitational waves, to develop a pulsar-based time standard and to improve solar system planetary ephemerides. FAST will have the sensitivity to observe known pulsars with significantly improved signal-to-noise ratios and will discover a large number of currently unknown pulsars. We describe how FAST will contribute to PTA research and show that jitter-and timing-noise will be the limiting noise processes for FAST data sets. Jitter noise will limit the timing precision achievable over data spans of a few years while timing noise will limit the precision achievable over many years.
基金This project,as one of five key projects,is being carried out by using FAST,a Chinese national mega-science facility built and operated by the National Astronomical Observatories,Chinese Academy of Sciences.J.L.Han is supported by the National Natural Science Foundation of China(NSFC,Nos.11988101 and 11833009)the Key Research Program of the Chinese Academy of Sciences(Grant No.QYZDJ-SSW-SLH021)+4 种基金C.Wang is partially supported by NSFC No.U1731120X.Y.Gao is partially supported by NSFC No.U1831103P.F.Wang is partially supported by the NSFC No.11873058 and the National SKA program of China No.2020SKA0120200.Jun Xu is partially supported by NSFC No.U2031115H.G.Wang is partially supported by the National SKA program of China(No.2020SKA0120100)R.Yuen is partly supported by Xiaofeng Yang's Xinjiang Tianchi Bairen project and CAS Pioneer Hundred Talents Program.L.G.Hou thanks the support from the Youth Innovation Promotion Association CAS.
文摘Discovery of pulsars is one of the main goals for large radio telescopes.The Five-hundredmeter Aperture Spherical radio Telescope(FAST),that incorporates an L-band 19-beam receiver with a system temperature of about 20 K,is the most sensitive radio telescope utilized for discovering pulsars.We designed the snapshot observation mode for a FAST key science project,the Galactic Plane Pulsar Snapshot(GPPS)survey,in which every four nearby pointings can observe a cover of a sky patch of 0.1575 square degrees through beam-switching of the L-band 19-beam receiver.The integration time for each pointing is 300 seconds so that the GPPS observations for a cover can be made in 21 minutes.The goal of the GPPS survey is to discover pulsars within the Galactic latitude of±10∘from the Galactic plane,and the highest priority is given to the inner Galaxy within±5∘.Up to now,the GPPS survey has discovered 201 pulsars,including currently the faintest pulsars which cannot be detected by other telescopes,pulsars with extremely high dispersion measures(DMs)which challenge the currently widely used models for the Galactic electron density distribution,pulsars coincident with supernova remnants,40 millisecond pulsars,16 binary pulsars,some nulling and mode-changing pulsars and rotating radio transients(RRATs).The follow-up observations for confirmation of new pulsars have polarization-signals recorded for polarization profiles of the pulsars.Re-detection of previously known pulsars in the survey data also leads to significant improvements in parameters for 64 pulsars.The GPPS survey discoveries are published and will be updated at http://zmtt.bao.ac.cn/GPPS/.
基金Supported by the National Natural Science Foundation of China
文摘Resonant cyclotron scattering (RCS) in pulsar magnetospheres is considered. The photon diffusion equation (Kompaneets equation) for RCS is derived. The photon system is modeled three dimensionally. Numerical calculations show that there exist not only up scattering but also down scattering of RCS, depending on the parameter space. RCS's possible applications to spectral energy distributions of magnetar candidates and radio quiet isolated neutron stars (INSs) are pointed out. The optical/UV excess of INSs may be caused by the down scattering of RCS. The calculations for RX J1856.5-3754 and RX J0720.4-3125 are presented and compared with their observational data. In our model, the INSs are proposed to be normal neutron stars, although the quark star hypothesis is still possible. The low pulsation amplitude of INSs is a natural consequence in the RCS model.
基金the National Key R&D Program of China (No. 2017YFA0402602)the Strategic Priority Research Programme (B) of the Chinese Academy of Sciences (No. XDB23010200)
文摘Flux densities are fundamental observational parameters that describe a pulsar.In the current pulsar catalogue,27% of the listed radio pulsars have no flux density measurement in the 20 cm observing band.Here,we present the first such measurements for 32 pulsars observed employing the Parkes radio telescope.We have used both archival and new observations to make these measurements.Various schemes exist for measuring flux densities and we show how the measured flux densities vary between these methods and how the presence of radio-frequency interference will bias the flux density measurements.
基金supported by the National SKA Program of China(Grant No.2020SKA0120300)the National Key R&D Program of China(Grant No.2017YFA0402602)+3 种基金the National Natural Science Foundation of China(Grant Nos.U1831104,11673002,U1531243,11705163,11822302 and 11803007)the Strategic Priority Research Program of CAS(Grant No.XDB23010200)Ningbo Natural Science Foundation(Grant No.2019A610066)provided by China Scholarship Council during a visit by C.-J.X to JAEA is acknowledged。
文摘The state of supranuclear matter in compact stars remains puzzling,and it is argued that pulsars could be strangeon stars.The consequences of merging double strangeon stars are worth exploring,especially in the new era of multi-messenger astronomy.To develop the"strangeon kilonova"scenario proposed in Paper I,we make a qualitative description about the evolution of ejecta and light curves for merging double strangeon stars.In the hot environment of the merger,the strangeon nuggets ejected by tidal disruption and hydrodynamical squeezing would suffer from evaporation,in which process particles,such as strangeons,neutrons and protons,are emitted.Taking into account both the evaporation of strangeon nuggets and the decay of strangeons,most of the strangeon nuggets would turn into neutrons and protons,within dozens of milliseconds after being ejected.The evaporation rates of different particles depend on temperature,and we find that the ejecta could end up with two components,with high and low opacity respectively.The high opacity component would be in the directions around the equatorial plane,and the low opacity component would be in a broad range of angular directions.The bolometric light curves show that the spin-down power of the long-lived remnant would account for the whole emission of kilonova AT2017gfo associated with GW170817,if the total ejected mass 10^(-3)M⊙.The detailed picture of merging double strangeon stars is expected to be tested by future numerical simulations.
基金supported by the National Natural Science Foundation of China(11673002,U1531243 and 11373011)the Strategic Priority Research Program of CAS(No.XDB23010200)
文摘The neutrino burst detected during supernova SN 1987A is explained in a strangeon star model, in which it is proposed that a pulsar-like compact object is composed of strangeons (strangeon: an abbreviation for "strange nucleon"). A nascent strangeon star's initial internal energy is calculated, with the inclusion of pion excitation (energy around 1053 erg, comparable to the gravitational binding energy of a collapsed core). A liquid-solid phase transition at temperature - 1 - 2 MeV may occur only a few tens of seconds after core collapse, and the thermal evolution of a strangeon star is then modeled. It is found that the neutrino burst observed from SN 1987A can be reproduced in such a cooling model.
基金supported by the National Key R&D Program of China(No.2017YFA0402602)the West Light Foundation(XBBS-2014-23)the National Natural Science Foundation of China(Grant Nos.11203018,11673002 and U1531243)
文摘The state of supranuclear matter in compact stars remains puzzling, and it is argued that pul- sars could be strangeon stars. What would happen if binary strangeon stars merge? This kind of merger could result in the formation of a hyper-massive strangeon star, accompanied by bursts of gravitational waves and electromagnetic radiation (and even a strangeon kilonova explained in the paper). The tidal polarizability of binary strangeon stars is different from that of binary neutron stars, because a strangeon star is self-bound on the surface by the fundamental strong force while a neutron star by the gravity, and their equations of state are different. Our calculation shows that the tidal polarizability of merging bi- nary strangeon stars is favored by GW170817. Three kinds of kilonovae (i.e., of neutron, quark and strangeon) are discussed, and the light curve of the kilonova AT 2017gfo following GW170817 could be explained by considering the decaying strangeon nuggets and remnant star spin-down. Additionally, the energy ejected to the fireball around the nascent remnant strangeon star, being manifested as a gamma-ray burst, is calculated. It is found that, after a prompt burst, an X-ray plateau could follow in a timescale of 102 - 103 s. Certainly, the results could be tested also by further observational synergies between gravitational wave detectors (e.g., Advanced LIGO) and X-ray telescopes (e.g., the Chinese HXMT satellite and eXTP mission), and especially if the detected gravitational wave form is checked by peculiar equations of state provided by the numerical relativistical simulation.
基金Supported by the National Natural Science Foundation of China
文摘The very small braking index of PSR J1734-3333, n = 0.9 ± 0.2, chal- lenges the current theories of braking mechanisms in pulsars. We present a possible interpretation that this pulsar is surrounded by a fall-hack disk and braked by it. A modified braking torque is proposed based on the competition between the magnetic energy density of the pulsar and the kinetic energy density of the fall-back disk. With this torque, a self-similar disk can fit all the observed parameters of PSR J1734-3333 with natural initial values of parameters. In this regime, the star will evolve to the re- gion having anomalous X-ray pulsars and soft gamma repeaters in the P -/5 diagram in about 20 000 years and stay there for a very long time. The mass of the disk around PSR J1734-3333 in our model is about 10M similar to the observed mass of the disk around AXP 4U 0142+61.
基金supported by the National Natural Science Foundation of China (NSFC, GrantNos. 10935001 and 10973002)the National Basic Research Program of China (973 Program, Grant No. 2009CB824800)the John Templeton Foundation
文摘X-ray dim isolated neutron stars are peculiar pulsar-like objects, characterized by their Planck-like spectrum. In studying their spectral energy distributions, optical/ultraviolet (UV) excess is a long standing problem. Recently Kaplan et al. measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may be due to contributions from the bremsstrahlung emission of the electron system in addition to the RCS process.
文摘The Five-hundred-meter Aperture Spherical radio Telescope(FAST)passed its national acceptance inspection on 2020 January 11.This special issue includes a total of 15 papers,which are selected to introduce the status of FAST’s performance and demonstrate the key technologies applied to FAST.The presented performance parameters can provide an important reference for scientists to propose observations with FAST.The key technologies presented in these papers include design and implementation in the measurement and control system,electromagnetic compatibility system,and receiver system.Finally,scientific achievements obtained by FAST during the commissioning phase are also reported.
基金supported by the Mo ST Grant(2016YFE0100300)the National Key R&D Program of China(2017YFA0402602)+2 种基金NSFC(11633004,11473044,11653003,11673002 and U1531243)the Strategic Priority Research Program of CAS(XDB23010200)the CAS grants(QYZDJSSW-SLH017 and CAS XDB 23040100)。
文摘The fast radio burst,FRB 171019,was relatively bright when discovered first by ASKAP but was identified as a repeater with three faint bursts detected later by GBT and CHIME.These observations lead to the discussion of whether the first bright burst shares the same mechanism with the following repeating bursts.A model of binary neutron star merger is proposed for FRB 171019,in which the first bright burst occurred during the merger event,while the subsequent repeating bursts are starquake-induced,and generally fainter,as the energy release rate for the starquakes can hardly exceed that of the catastrophic merger event.This scenario is consistent with the observation that no later burst detected is as bright as the first one.
基金Supported by the National Natural Science Foundation of China.
文摘Efforts are made to understand the timing behaviors (e.g., the jumps in the projected pulsar semimajor axis at the periastron passages) observed in the 13-year monitoring of PSR B1259-63. Planet-like objects are suggested to orbit around the Be star, which may gravitationally perturb the (probably low mass) pulsar when it passes through periastron. An accretion disk should exist outside the pulsar's light cylinder, which creates a spindown torque on the pulsar due to the propeller effect. The observed negative braking index and the discrepant timing residuals close to periastron could be related to the existence of a disk with a varying accretion rate. A speculation is presented that the accretion rate may increase on a long timescale in order to explain the negative braking index.
基金supported by the National SKA Program of China(2020SKA0120100,2020SKA0120200)the National Key R&D Program of China(2017YFA0402602)+7 种基金the National Natural Science Foundation of China(NSFC,Grant No.12041303)the CAS-MPG LEGACY project and funding from the Max-Planck Partner Groupsupported by the National Natural Science Foundation of China(NSFC,Grant Nos.11988101 and 11833009)the Key Research Program of the Chinese Academy of Sciences(Grant No.QYZDJ-SSW-SLH021supported by the Cultivation Project for the FAST scientific Payoff and Research Achievement of CAMS-CASsupported by the Key Research Project of Zhejiang Lab no.2021PE0AC0supported by National Natural Science Foundation of China(Grant No.12003028)the China Manned Spaced Project(CMS-CSST-2021-B11)。
文摘As the third paper in the multiple-part series,we report the statistical properties of radio bursts detected from the repeating fast radio burst(FRB)source FRB 20201124A with the Five-hundred-meter Aperture Spherical radio Telescope during an extremely active episode between the 25th and 28th of September 2021(UT).We focus on the polarization properties of536 bright bursts with S/N>50.We found that the Faraday rotation measures(RMs)monotonically dropped from-579to-605 rad m^(-2)in the 4 day window.The RM values were compatible with the values(-300 to-900 rad m^(-2))reported 4 months ago.However,the RM evolution rate in the current observation window was at least an order of magnitude smaller than the one(~500 rad m^(-2)day^(-1))previously reported during the rapid RM-variation phase,but is still higher than the one(≤1 rad m^(-2)day^(-1))during the later RM no-evolution phase.The bursts of FRB 20201124A were highly polarized with the total degree of polarization(circular plus linear)greater than 90%for more than 90%of all bursts.The distribution of linear polarization position angles(PAs),degree of linear polarization(L/I)and degree of circular polarization(V/I)can be characterized with unimodal distribution functions.During the observation window,the distributions became wider with time,i.e.,with larger scatter,but the centroids of the distribution functions remained nearly constant.For individual bursts,significant PA variations(confidence level 5σ)were observed in 33%of all bursts.The polarization of single pulses seems to follow certain complex trajectories on the Poincarésphere,which may shed light on the radiation mechanism at the source or the plasma properties along the path of FRB propagation.
基金Supported by the National Natural Science Foundation of China
文摘Hard X-rays above 10 keV are detected from several anomalous X-ray pul- sars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J 170849-400910, 1E 1547.0- 5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Triimper et al., showing that the accretion scenario could be compatible with X- ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at -200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs.
基金support of MoST(2016YFE0100300)the National Natural Science Foundation of China(NSFC,Nos.11473044,11633004,11653003)+9 种基金CAS(QYZDJ-SSW-SLH017)supported by the Open Project Program of the Key Laboratory of FAST,Chinese Academy of Sciences(CAS)supported by the West Light Foundation(XBBS-2014-23) NSFC(No.11203018)supported by NSFC(No.11225314)the Open Project Program of the Key Laboratory of Radio Astronomy,CASsupported by the National Key R&D Program of China(No.2017YFA0402602)NSFC(Nos.11673002 and U1531243)the Strategic Priority Program of CAS(No.XDB23010200)supported by Special Funding for Advanced Users,budgeted and administrated by the Center for Astronomical Mega-Science,Chinese Academy of Sciences(CAMS).
文摘Several X-ray-dim isolated neutron stars (XDINSs), also known as the Magnificent Seven, exhibit a Planck-like soft X-ray spectrum. In the optical/ultraviolet (UV) band, there is an excess of radiation compared to an extrapolation from the X-ray spectrum. However, the majority exhibits "spec- tral deviations": the fact that there is more flux at longer wavelengths makes spectra deviate from the Rayleigh-Jeans law. A model of bremsstrahlung emission from a nonuniform plasma atmosphere is proposed in the regime of a strangeon star to explain the optical/UV excess and its spectral devi- ation as well as X-ray pulsation. The atmosphere is on the surface of strangeon matter, which has negligible emission, and is formed by the accretion of ISM-fed debris disk matter moving along the magnetic field lines to near the polar caps. These particles may spread out of the polar regions which makes the atmosphere non-uniform. The modeled electron temperatures are ~ 100 - 200 eV with radi- ation radii Ropt ~ 5 - 14km. The spectra of five sources (RX J0720.4-3125, RX J0806.4-4123, RX J1308.6+2127, RX J1605.3+3249, RX J1856.5-3754) from optical/UV to X-ray bands can be fitted well by the radiative model, and exhibit Gaussian absorption lines at ~ 100 - 500 eV as would be expected. Furthermore, the surroundings (i.e., fallback disks or dusty belts) of XDINSs could be tested by future infrared/submillimeter observations.
基金supported by the National Key R&D Program of China(Grant No.2018YFA0404703)the National Natural Science Foundation of China(Grant Nos.11673002,12003047 and U1531243)the Open Project Program of the Key Laboratory of FAST,NAOC,Chinese Academy of Sciences。
文摘It is conjectured that coherent re-emission of cyclotron resonance absorption could result in pulsar giant pulses.This conjecture seems reasonable as it can naturally explain the distribution of pulsars with giant pulses on the P-P diagram.