期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
电沉积铜箔的微观组织结构--三维电结晶模式中的电结晶机理探讨 被引量:5
1
作者 刘仁志 谢平令 王翀 《电化学》 CAS CSCD 北大核心 2022年第6期31-41,共11页
电沉积铜箔随着印刷线路板和锂离子电池的大量应用而越来越受到重视,产业规模仍在发展中。相对于电镀设备的制造和电沉积工艺的开发,但有关电沉积的机理方面的研究较少。本文总结了电沉积铜箔的制造过程并分析了不同电沉积铜技术中各电... 电沉积铜箔随着印刷线路板和锂离子电池的大量应用而越来越受到重视,产业规模仍在发展中。相对于电镀设备的制造和电沉积工艺的开发,但有关电沉积的机理方面的研究较少。本文总结了电沉积铜箔的制造过程并分析了不同电沉积铜技术中各电镀参数的差异,指出电沉积电流密度在铜箔形成过程中的重要作用。通过展示和比较不同电沉积铜箔的微观组织结构,讨论了电沉积中各影响因素对铜箔微观组织结构以及对其宏观机械性能的影响。从前人研究结果中发现电沉积条件和镀液组分对铜箔微观组织形貌及其宏观机械性能有重大影响,但电解铜箔的晶粒大小、织构等微观组织结构参数与其宏观机械性能间无法建立起有效的关联,这对以镀层的微观组织结构为桥梁来建立电沉积条件对铜箔宏观机械性能的理论框架带来极大的困扰。前人试图通过研究铜箔电沉积机理来解决这一难题。经典金属电沉积理论认为提高过电位能够增加瞬时成核数量并降低晶粒平均尺寸,但无法解释结晶中择优取向等问题。渡边辙发现电沉积与冶金的相似性,认为电沉积金属的微观组织结构与金属熔点相关,但其“微观结构控制”理论还存在一些缺陷,例如无法解释添加剂对晶粒的细化作用等。笔者建议可从价键及能带理论角度重塑电沉积机理与铜箔宏观性能间的关系,既通过建立铜箔电沉积过程中金属键形成与铜显微组织结构的理论联系,探讨其对铜箔宏观特性的影响。 展开更多
关键词 过电位 电流密度 铜晶粒 铜箔织构 物理性能
下载PDF
Microstructure and tensile properties of Mo alloy synthetically strengthened by nano-Y_2O_3 and nano-CeO_2 被引量:5
2
作者 ren-zhi liu Kuai-She Wang +3 位作者 Peng-Fa Feng Geng An Qin-Li Yang Hu Zhao 《Rare Metals》 SCIE EI CAS CSCD 2014年第1期58-64,共7页
Nano-Y2O3 and nano-CeO2 of different weight ratio mixed with deionizing water were doped into MoO2 powder by liquid-solid doping method. The diameter 1.80 and 0.18 mm alloy wires of Mo-0.3Y, Mo-0.3Ce, and Mo-0.15Y-0.1... Nano-Y2O3 and nano-CeO2 of different weight ratio mixed with deionizing water were doped into MoO2 powder by liquid-solid doping method. The diameter 1.80 and 0.18 mm alloy wires of Mo-0.3Y, Mo-0.3Ce, and Mo-0.15Y-0.15Ce were prepared through reduction, iso- static pressing, sintering, and drawing. Tensile properties, second phase microstructure and fracture surface appear- ance of wires were analyzed. The better refining effect for Mo alloy powder can be gotten after two kinds of nano- particle oxide doped into MoO2 than only one doped. Nano-Y2O3 and nano-CeO2 have different influences on sintering process. For nano-CeO2, the constraining effect of grain growth focuses on the initial sintering stage, nano- Y2O3 plays refining grains roles in the later densification stage. Nano-Y2O3 is undistorted and keeps intact in the process of drawing; and nano-CeO2 is elongated and bro- ken into parts in the drawing direction. The strengthening effect of nano-Y2O3 and nano-CeO2 keeps the finer grains and superior tensile properties for Mo-0.15Y-0.15Ce wire. 展开更多
关键词 Nano-Y2O3 NANO-CEO2 Mo alloy wire MICROSTRUCTURE Tensile property Fracture surface
原文传递
Mechanical properties of molybdenum products prepared by using molybdenum powders with different micro-morphologies 被引量:3
3
作者 Geng An Jun Sun +2 位作者 ren-zhi liu Jing Li Yuan-Jun Sun 《Rare Metals》 SCIE EI CAS CSCD 2015年第4期276-281,共6页
Using two kinds of molybdenum (Mo) powders with different micro-morphologies as raw materials, the Mo wires with a diameter of 0.18 mm and Mo sheets with thickness of 0.5 and 0.2 mm were prepared at the same process... Using two kinds of molybdenum (Mo) powders with different micro-morphologies as raw materials, the Mo wires with a diameter of 0.18 mm and Mo sheets with thickness of 0.5 and 0.2 mm were prepared at the same process of pressing, sintering, drawing, or rolling, respectively. By comparative analysis on the microstructure and mechanical properties of Mo wires and Mo sheets, the effect of Mo powder micro-morphology on properties and quality of Mo products was studied. The results show that, compared with that prepared by traditional Mo powder with inhomogeneous particle size and aggregation, the Mo wires prepared by specific Mo powder with homogeneous particle sizes, less agglomeration, and better dispersion exhibit higher yield, higher tensile strength, and lower elongation at room temperature, and the Mo sheets also show excellent high-temperature performances and better isotropy. The essential reason for those is the difference of Mo powder micro-morphology. Inhomogeneous particle size and aggregation of Mo powder greatly influence the microstructure of Mo sintered compacts and mechanical properties of Mo products. 展开更多
关键词 Molybdenum powder MICRO-MORPHOLOGY AGGREGATION Molybdenum product Mechanical property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部