Traditional diagnostic techniques including visual examination,ultrasound(US),and magnetic resonance imaging(MRI)have limitations of in-depth information for the detection of nail disorders,resolution,and practicality...Traditional diagnostic techniques including visual examination,ultrasound(US),and magnetic resonance imaging(MRI)have limitations of in-depth information for the detection of nail disorders,resolution,and practicality.This pilot study,for thefirst time,evaluates a dualmodality imaging system that combines photoacoustic tomography(PAT)with the US for the multiparametric quantitative assessment of human nail.The study involved a small cohort offive healthy volunteers who underwent PAT/US imaging for acquiring the nail unit data.The PAT/US dual-modality imaging successfully revealed thefine anatomical structures and microvascular distribution within the nail and nail bed.Moreover,this system utilized multispectral PAT to analyze functional tissue parameters,including oxygenated hemoglobin,deoxyhemoglobin,oxygen saturation,and collagen under tourniquet and cold stimulus tests to evaluate changes in the microcirculation of the nail bed.The quantitative analysis of multispectral PAT reconstructed images demonstrated heightened sensitivity in detecting alterations in blood oxygenation levels and collagen content within the nail bed,under simulated different physiological conditions.This pilot study highlights the potential of PAT/US dual-modality imaging as a real-time,noninvasive diagnostic modality for evaluating human nail health and for early detection of nail bed pathologies.展开更多
Transition radiation(TR) induced by electron–matter interaction usually demands vast accelerating voltages, and the radiation angle cannot be controlled. Here we present a mechanism of direction controllable inverse ...Transition radiation(TR) induced by electron–matter interaction usually demands vast accelerating voltages, and the radiation angle cannot be controlled. Here we present a mechanism of direction controllable inverse transition radiation(DCITR) in a graphene-dielectric stack excited by low-velocity electrons. The revealed mechanism shows that the induced hyperbolic-like spatial dispersion and the superposition of the individual bulk graphene plasmons(GPs) modes make the fields, which are supposed to be confined on the surface, radiate in the stack along a special radiation angle normal to the Poynting vector. By adjusting the chemical potential of the graphene sheets, the radiation angle can be controlled. And owing to the excitation of bulk GPs, only hundreds of volts for the accelerating voltage are required and the field intensity is dramatically enhanced compared with that of the normal TR. Furthermore, the presented mechanism can also be applied to the hyperbolic stack based on semiconductors in the infrared region as well as noble metals in the visible and ultraviolet region.Accordingly, the presented mechanism of DCITR is of great significance in particle detection, radiation emission,and so on.展开更多
基金supported by the program of Chengdu Fifth people's hospital Fund,No.KYJJ 2021-29the Xinglin Scholars research program,No.YYZX2021037+1 种基金the Chengdu Medical Research Project,Nos.2022055 and 2023022,Chongqing Education Commission,Youth Fund(No.KJQN202000607)Chongqing postdoctoral research project(special funding project,No.2021XM3040).
文摘Traditional diagnostic techniques including visual examination,ultrasound(US),and magnetic resonance imaging(MRI)have limitations of in-depth information for the detection of nail disorders,resolution,and practicality.This pilot study,for thefirst time,evaluates a dualmodality imaging system that combines photoacoustic tomography(PAT)with the US for the multiparametric quantitative assessment of human nail.The study involved a small cohort offive healthy volunteers who underwent PAT/US imaging for acquiring the nail unit data.The PAT/US dual-modality imaging successfully revealed thefine anatomical structures and microvascular distribution within the nail and nail bed.Moreover,this system utilized multispectral PAT to analyze functional tissue parameters,including oxygenated hemoglobin,deoxyhemoglobin,oxygen saturation,and collagen under tourniquet and cold stimulus tests to evaluate changes in the microcirculation of the nail bed.The quantitative analysis of multispectral PAT reconstructed images demonstrated heightened sensitivity in detecting alterations in blood oxygenation levels and collagen content within the nail bed,under simulated different physiological conditions.This pilot study highlights the potential of PAT/US dual-modality imaging as a real-time,noninvasive diagnostic modality for evaluating human nail health and for early detection of nail bed pathologies.
基金National Key Research and Development Program of China(2017YFA0701000,2018YFF01013001)National Natural Science Foundation of China(NSFC)(61505022,61701084).
文摘Transition radiation(TR) induced by electron–matter interaction usually demands vast accelerating voltages, and the radiation angle cannot be controlled. Here we present a mechanism of direction controllable inverse transition radiation(DCITR) in a graphene-dielectric stack excited by low-velocity electrons. The revealed mechanism shows that the induced hyperbolic-like spatial dispersion and the superposition of the individual bulk graphene plasmons(GPs) modes make the fields, which are supposed to be confined on the surface, radiate in the stack along a special radiation angle normal to the Poynting vector. By adjusting the chemical potential of the graphene sheets, the radiation angle can be controlled. And owing to the excitation of bulk GPs, only hundreds of volts for the accelerating voltage are required and the field intensity is dramatically enhanced compared with that of the normal TR. Furthermore, the presented mechanism can also be applied to the hyperbolic stack based on semiconductors in the infrared region as well as noble metals in the visible and ultraviolet region.Accordingly, the presented mechanism of DCITR is of great significance in particle detection, radiation emission,and so on.