The polarization of a D-shaped fiber is modulated after immersing it in magnetic fluid(MF)and applying a magnetic field.Theoretical analysis predicts that magneto-optical dichroism of MF plays a key role in light pola...The polarization of a D-shaped fiber is modulated after immersing it in magnetic fluid(MF)and applying a magnetic field.Theoretical analysis predicts that magneto-optical dichroism of MF plays a key role in light polarization modulation.During light polarization modulation,the evanescent wave polarized parallel to the magnetic field has greater loss than its orthogonal component.Light polarization of a D-shaped fiber with a wide polished surface can be modulated easily.High concentration MF and a large magnetic field all have great ability to modulate light polarization.展开更多
Orbital angular momentum(OAM), as a fundamental parameter of a photon, has attracted great attention in recent years. Although various properties and applications have been developed by modulating the OAM of photons, ...Orbital angular momentum(OAM), as a fundamental parameter of a photon, has attracted great attention in recent years. Although various properties and applications have been developed by modulating the OAM of photons, there is rare research about the non-uniform OAM. We propose and generate a new kind of continuously tunable azimuthally non-uniform OAM for the first time, to the best of our knowledge, which is carried by a hybridly polarized vector optical field with a cylindrically symmetric intensity profile and a complex polarization singularity. We also present the perfect vector optical field carrying non-uniform OAM with a fixed radius independent of topological charges, which can propagate steadily without radial separation, solving the problem of the unsteady propagation due to the broadened OAM spectrum of the non-uniform OAM. This new kind of tunable non-uniform OAM with a cylindrical symmetric intensity profile, complex polarization singularity, and propagation stability enriches the family of OAMs and can be widely used in many regions such as optical manipulation, quantum optics, and optical communications.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61675115 and 11574178)the Shandong Provincial Natural Science Foundation(No.ZR2016JL005)。
文摘The polarization of a D-shaped fiber is modulated after immersing it in magnetic fluid(MF)and applying a magnetic field.Theoretical analysis predicts that magneto-optical dichroism of MF plays a key role in light polarization modulation.During light polarization modulation,the evanescent wave polarized parallel to the magnetic field has greater loss than its orthogonal component.Light polarization of a D-shaped fiber with a wide polished surface can be modulated easily.High concentration MF and a large magnetic field all have great ability to modulate light polarization.
基金the National Natural Science Foundation of China(Nos.11534006,11804187,11904199,11674184,and 11774183)Natural Science Foundation of Shandong Province(No.ZR2019BF006)+1 种基金Shandong Province Higher Educational Science and Technology Program(No.J18KA229)Collaborative Innovation Center of Extreme Optics.
文摘Orbital angular momentum(OAM), as a fundamental parameter of a photon, has attracted great attention in recent years. Although various properties and applications have been developed by modulating the OAM of photons, there is rare research about the non-uniform OAM. We propose and generate a new kind of continuously tunable azimuthally non-uniform OAM for the first time, to the best of our knowledge, which is carried by a hybridly polarized vector optical field with a cylindrically symmetric intensity profile and a complex polarization singularity. We also present the perfect vector optical field carrying non-uniform OAM with a fixed radius independent of topological charges, which can propagate steadily without radial separation, solving the problem of the unsteady propagation due to the broadened OAM spectrum of the non-uniform OAM. This new kind of tunable non-uniform OAM with a cylindrical symmetric intensity profile, complex polarization singularity, and propagation stability enriches the family of OAMs and can be widely used in many regions such as optical manipulation, quantum optics, and optical communications.