期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A TEMPOL and rapamycin loaded nanofiber-covered stent favors endothelialization and mitigates neointimal hyperplasia and local inflammation 被引量:1
1
作者 Rui Wang Jian Lu +12 位作者 Jiasheng Yin Han Chen Hongmei Liu Fei xu Tongtong Zang rende xu Chenguang Li Yizhe Wu Qilin Wu Xiang Fei Meifang Zhu Li Shen Junbo Ge 《Bioactive Materials》 SCIE CSCD 2023年第1期666-677,共12页
An increased level of reactive oxygen species(ROS)plays a major role in endothelial dysfunction and vascular smooth muscle cell(VSMC)proliferation during in-stent thrombosis and restenosis after coronary artery stenti... An increased level of reactive oxygen species(ROS)plays a major role in endothelial dysfunction and vascular smooth muscle cell(VSMC)proliferation during in-stent thrombosis and restenosis after coronary artery stenting.Herein,we report an electrospun core-shell nanofiber coloaded with 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl(TEMPOL)and rapamycin(RAPA)that correspondingly serves as an ROS scavenger and VSMC inhibitor.This system has the potential to improve the biocompatibility of current drug-eluting stent(DES)coatings with the long-term and continuous release of TEMPOL and rapamycin.Moreover,the RAPA/TEMPOL-loaded membrane selectively inhibited the proliferation of VSMCs while sparing endothelial cells(ECs).This membrane demonstrated superior ROS-scavenging,anti-inflammatory and antithrombogenic effects in ECs.In addition,the membrane could maintain the contractile phenotype and mitigate platelet-derived growth factor BB(PDGF-BB)-induced proliferation of VSMCs.In vivo results further revealed that the RAPA/TEMPOL-loaded covered stents promoted rapid restoration of vascular endothelium compared with DES and persistently impeded inflammation and neointimal hyperplasia in porcine models. 展开更多
关键词 Electrospun nanofiber membrane In-stent restenosis RE-ENDOTHELIALIZATION Reactive oxygen species
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部