As a leader of long persistent luminescence(LPL) materials, the optical properties of aluminate phosphor have remained unsurpassed for many years. As a powder material, its practical application will always be limited...As a leader of long persistent luminescence(LPL) materials, the optical properties of aluminate phosphor have remained unsurpassed for many years. As a powder material, its practical application will always be limited to the field of security signs. In this paper, the SrAl_(2)O_(4)∶Eu^(2+), Dy^(3+)inorganic solid material with comparable LPL properties to powder materials was obtained. The crystallization mechanism and crystallite micro-morphology of inorganic glass materials have been studied, and a new opinion is put forward that the large-size SrAl_(2)O_(4)crystallites in the glass matrix are stacked by rod-shaped crystals arranged in a regular direction. In addition,the SrAl_(2)O_(4)∶Eu^(2+), Dy^(3+)glass obtained cannot only collect high-energy photons but also is sensitive to lowenergy sunlight. The results show that the material exhibits superior performance in LPL, thermoluminescence,and photostimulable luminescence. Based on this property, a new application of this material in the field of information storage was explored. This paper has a certain reference value for the development and application of aluminate LPL materials in the field of smart optical information storage.展开更多
Natural sunlight activated persistent luminescence(PeL)is ideal candidate for optical information display in outdoors without the requirement of electric supply.Except the brightness and duration,the stability especia...Natural sunlight activated persistent luminescence(PeL)is ideal candidate for optical information display in outdoors without the requirement of electric supply.Except the brightness and duration,the stability especially water resistance of the PeL materials is of significant importance for practical application,which remains a great obstacle up to date.Herein,we report a new sunlight activated PeL glass ceramic containing hexagonal Sr_(13)Al_(22)Si_(10)O_(66):Eu^(2+)crystals,which exhibits strong blue PeL and can last more than 200 h.The PeL can be charged by the full wavelengths located in AM 1.5G due to the broad distribution of traps in the crystal structure.The PeL is clearly observed by the naked eye even after 24 h upon sunlight irradiation irrespective of the weather,and the photoluminescence intensity only decreased~3.3%after storing in water for 365 d.We demonstrate its potential application for thermal and stress responsive display as well as long-term continuous security indication upon sunlight irradiation,which not only save vast energy and reduce environment pollution,but also are appropriate for outdoor usage.展开更多
基金Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province of China,National Natural Science Foundation of China (62075204,U1909211)。
文摘As a leader of long persistent luminescence(LPL) materials, the optical properties of aluminate phosphor have remained unsurpassed for many years. As a powder material, its practical application will always be limited to the field of security signs. In this paper, the SrAl_(2)O_(4)∶Eu^(2+), Dy^(3+)inorganic solid material with comparable LPL properties to powder materials was obtained. The crystallization mechanism and crystallite micro-morphology of inorganic glass materials have been studied, and a new opinion is put forward that the large-size SrAl_(2)O_(4)crystallites in the glass matrix are stacked by rod-shaped crystals arranged in a regular direction. In addition,the SrAl_(2)O_(4)∶Eu^(2+), Dy^(3+)glass obtained cannot only collect high-energy photons but also is sensitive to lowenergy sunlight. The results show that the material exhibits superior performance in LPL, thermoluminescence,and photostimulable luminescence. Based on this property, a new application of this material in the field of information storage was explored. This paper has a certain reference value for the development and application of aluminate LPL materials in the field of smart optical information storage.
基金The authors thank National Natural Science Foundation of China(52172164,51872270)National Key R&D Program of China(2018YFE0207700)+1 种基金Zhejiang Provincial Natural Science Foundation of China(LZ21A040002)National Natural Science Foundation of China Joint Fund Project(U190920054).
文摘Natural sunlight activated persistent luminescence(PeL)is ideal candidate for optical information display in outdoors without the requirement of electric supply.Except the brightness and duration,the stability especially water resistance of the PeL materials is of significant importance for practical application,which remains a great obstacle up to date.Herein,we report a new sunlight activated PeL glass ceramic containing hexagonal Sr_(13)Al_(22)Si_(10)O_(66):Eu^(2+)crystals,which exhibits strong blue PeL and can last more than 200 h.The PeL can be charged by the full wavelengths located in AM 1.5G due to the broad distribution of traps in the crystal structure.The PeL is clearly observed by the naked eye even after 24 h upon sunlight irradiation irrespective of the weather,and the photoluminescence intensity only decreased~3.3%after storing in water for 365 d.We demonstrate its potential application for thermal and stress responsive display as well as long-term continuous security indication upon sunlight irradiation,which not only save vast energy and reduce environment pollution,but also are appropriate for outdoor usage.