Recently revealed beam stealing attacks could greatly threaten the security and privacy of IEEE 802.11ad communications.The premise to restore normal network service is detecting and locating beam stealing attackers w...Recently revealed beam stealing attacks could greatly threaten the security and privacy of IEEE 802.11ad communications.The premise to restore normal network service is detecting and locating beam stealing attackers without their cooperation.Current consistency-based methods are only valid for one single attacker and are parametersensitive.From the viewpoint of image processing,this paper proposes an algorithm to jointly detect and locate multiple beam stealing attackers based on RSSI(Received Signal Strength Indicator)map without the training process involved in deep learning-based solutions.Firstly,an RSSI map is constructed based on interpolating the raw RSSI data for enabling high-resolution localization while reducing monitoring cost.Secondly,three image processing steps,including edge detection and segmentation,are conducted on the constructed RSSI map to detect and locate multiple attackers without any prior knowledge about the attackers.To evaluate our proposal’s performance,a series of experiments are conducted based on the collected data.Experimental results have shown that in typical parameter settings,our algorithm’s positioning error does not exceed 0.41 m with a detection rate no less than 91%.展开更多
基金This work was supported in part by the National Natural Science Foundation of China(Grant No.61671471)。
文摘Recently revealed beam stealing attacks could greatly threaten the security and privacy of IEEE 802.11ad communications.The premise to restore normal network service is detecting and locating beam stealing attackers without their cooperation.Current consistency-based methods are only valid for one single attacker and are parametersensitive.From the viewpoint of image processing,this paper proposes an algorithm to jointly detect and locate multiple beam stealing attackers based on RSSI(Received Signal Strength Indicator)map without the training process involved in deep learning-based solutions.Firstly,an RSSI map is constructed based on interpolating the raw RSSI data for enabling high-resolution localization while reducing monitoring cost.Secondly,three image processing steps,including edge detection and segmentation,are conducted on the constructed RSSI map to detect and locate multiple attackers without any prior knowledge about the attackers.To evaluate our proposal’s performance,a series of experiments are conducted based on the collected data.Experimental results have shown that in typical parameter settings,our algorithm’s positioning error does not exceed 0.41 m with a detection rate no less than 91%.