High power optically pumped vertical-external-cavity surface-emitting lasers with front and end pump are re- ported. The gain chip consists of 15 repeats of In0.26GaAs/GaAsP0.02 multiple quantum wells and 30 pairs of ...High power optically pumped vertical-external-cavity surface-emitting lasers with front and end pump are re- ported. The gain chip consists of 15 repeats of In0.26GaAs/GaAsP0.02 multiple quantum wells and 30 pairs of Alo.2GaAs/Alo.98GaAs distributed Bragg reflectors. The maximum output power of 3 W, optical-to-optical conversion efficiency of 22.4%, and slope efficiency of 29.8% are obtained with 5-℃ heatsink temperature under the front pump, while the maximum output power of 1.1 W, optical-to-optical conversion efficiency of 23.2%, and slope efficiency of 30.8% are reached with 5-℃ heatsink temperature under the end pump. Influences of thermal effects on the output power of the laser with front and end pump are discussed.展开更多
The high peak power of picosecond pulses produced by a self-mode-locked semiconductor disk laser can effectively improve the efficiency of nonlinear frequency conversion.This paper presents the intracavity frequency t...The high peak power of picosecond pulses produced by a self-mode-locked semiconductor disk laser can effectively improve the efficiency of nonlinear frequency conversion.This paper presents the intracavity frequency tripling in a self-mode-locked semiconductor disk laser,and a picosecond pulse train at 327 nm wavelength is achieved.The pulse repetition rate is 0.49 GHz,and the pulse width is 5.0 ps.The obtained maximum ultraviolet output power under mode locking is 30.5 m W,and the corresponding conversion efficiency is obviously larger than that of continuous-wave operation.These ultraviolet picosecond pulses have high spatial and temporal resolution and can be applied in some emerging fields.展开更多
基金Project supported by the Chongqing Research Program of Basic Research and Frontier Technology(Grant No.cstc2015jcyj BX0098)the National Natural Science Foundation of China(Grant No.61575011)the Foundation for the Creative Research Groups of Higher Education of Chongqing(Grant No.CXTDX201601016)
文摘High power optically pumped vertical-external-cavity surface-emitting lasers with front and end pump are re- ported. The gain chip consists of 15 repeats of In0.26GaAs/GaAsP0.02 multiple quantum wells and 30 pairs of Alo.2GaAs/Alo.98GaAs distributed Bragg reflectors. The maximum output power of 3 W, optical-to-optical conversion efficiency of 22.4%, and slope efficiency of 29.8% are obtained with 5-℃ heatsink temperature under the front pump, while the maximum output power of 1.1 W, optical-to-optical conversion efficiency of 23.2%, and slope efficiency of 30.8% are reached with 5-℃ heatsink temperature under the end pump. Influences of thermal effects on the output power of the laser with front and end pump are discussed.
基金supported by the Cooperation Project between Chongqing Local Universities and Institutions of Chinese Academy of Sciences,Chongqing Municipal Education Commission(No.HZ2021007)the National Natural Science Foundation of China(Nos.61904024,61975003,61790584,and 62025506)the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZD-M201900502)。
文摘The high peak power of picosecond pulses produced by a self-mode-locked semiconductor disk laser can effectively improve the efficiency of nonlinear frequency conversion.This paper presents the intracavity frequency tripling in a self-mode-locked semiconductor disk laser,and a picosecond pulse train at 327 nm wavelength is achieved.The pulse repetition rate is 0.49 GHz,and the pulse width is 5.0 ps.The obtained maximum ultraviolet output power under mode locking is 30.5 m W,and the corresponding conversion efficiency is obviously larger than that of continuous-wave operation.These ultraviolet picosecond pulses have high spatial and temporal resolution and can be applied in some emerging fields.