To improve the electrocatalytic transformation of carbon dioxide (CO_(2)) to multi-carbon (C_(2+)) products is of great importance.Here we developed a nitrogen-doped Cu catalyst,by which the maximum C_(2+) Faradaic ef...To improve the electrocatalytic transformation of carbon dioxide (CO_(2)) to multi-carbon (C_(2+)) products is of great importance.Here we developed a nitrogen-doped Cu catalyst,by which the maximum C_(2+) Faradaic efficiency can reach 72.7%in flow-cell system,with the partial current density reaching 0.62 A cm^(-2).The in situ Raman spectra demonstrate that the *CO adsorption can be strengthened on such a N-doped Cu catalyst,thus promoting the *CO utilization in the subsequent C–C coupling step.Simultaneously,the water activation can be well enhanced by N doping on Cu catalyst.Owing to the synergistic effects,the selectivity and activity for C_(2+) products over the N-deoped Cu catalyst are much improved.展开更多
We report a study of the electronic structure of BaFe_(2)As_(2) under uniaxial strains using angle-resolved photoemission spectroscopy and transport measurements. Two electron bands at the MY point, with an energy spl...We report a study of the electronic structure of BaFe_(2)As_(2) under uniaxial strains using angle-resolved photoemission spectroscopy and transport measurements. Two electron bands at the MY point, with an energy splitting of 50 meV in the strain-free sample, shift downward and merge into each other under a large uniaxial strain, while three hole bands at theГ point shift downward together. However, we also observed an enhancement of the resistance anisotropy under uniaxial strains by electrical transport measurements, implying that the applied strains strengthen the electronic nematic order in BaFe_(2)As_(2). These observations suggest that the splitting of these two electron bands at the MY point is not caused by the nematic order in BaFe_(2)As_(2).展开更多
We report the observation for the pz electron band and the band inversion in Fe1+yTexSe1-xwith angleresolved photoemission spectroscopy. Furthermore, we found that excess Fe(y>0) inhibits the topological band inver...We report the observation for the pz electron band and the band inversion in Fe1+yTexSe1-xwith angleresolved photoemission spectroscopy. Furthermore, we found that excess Fe(y>0) inhibits the topological band inversion in Fe1+yTexSe1-x,which explains the absence of Majorana zero modes in previous reports for Fe1+yTexSe1-xwith excess Fe. Based on our analysis of different amounts of Te doping and excess Fe, we propose a delicate topological phase in this material. Thanks to this delicate phase, one may be able to tune the topological transition via applying lattice strain or carrier doping.展开更多
Background Assembly guided by paper documents is the most widespread type used in the process of aircraft cable assembly.This process is very complicated and requires assembly workers with high-level skills.The techno...Background Assembly guided by paper documents is the most widespread type used in the process of aircraft cable assembly.This process is very complicated and requires assembly workers with high-level skills.The technologies of wearable Augmented Reality(AR)and portable visual inspection can be exploited to improve the efficiency and the quality of cable assembly.Methods In this study,we propose a smart assistance system for cable assembly that combines wearable AR with portable visual inspection.Specifically,a portable visual device based on binocular vision and deep learning is developed to realize fast detection and recognition of cable brackets that are installed on aircraft airframes.A Convolutional Neural Network(CNN)is then developed to read the texts on cables after images are acquired from the camera of the wearable AR device.An authoring tool that was developed to create and manage the assembly process is proposed to realize visual guidance of the cable assembly process based on a wearable AR device.The system is applied to cable assembly on an aircraft bulkhead prototype.Results The results show that this system can recognize the number,types,and locations of brackets,and can correctly read the text of aircraft cables.The authoring tool can assist users who lack professional programming experience in establishing a process plan,i.e.,assembly outline based on AR for cable assembly.Conclusions The system can provide quick assembly guidance for aircraft cable with texts,images,and a 3 D model.It is beneficial for reducing the dependency on paper documents,labor intensity,and the error rate.展开更多
Polynary transition-metal layered hydroxides are promising energy materials owing to their unique architecture,impressive theoretical capacities,and adjustable compositions.Regulating the dimensional morphology and ac...Polynary transition-metal layered hydroxides are promising energy materials owing to their unique architecture,impressive theoretical capacities,and adjustable compositions.Regulating the dimensional morphology and active sites/redox states are the keys to electrochemical performance enhancement.Distinguish from the reported mono-metal or binary-metal configurations,a new ternary-metal AlCoNi-LTH is coanchored onto a highly graphitized porous N-doped carbon matrix to develop superior 3D hierarchical microporous functional energy hybrids AlCoNi-LTHs/NAC.The constructed hybrids possess superior structural durability,good electrical conductivity,and rich active sites due to the strong interfacial conjunction and favorable synergistic effect between the doped porous carbon and AlCoNi nanosheets.Consequently,the AlCoNi-LTHs/NAC hybrids demonstrate high conductivity,reasonable specific surface area,and superior specific capacitance,and the assembled hybrid battery-type supercapacitor reveals an ideal energy density of 72.6 Wh kg^(-1)at a power density of 625 W kg^(-1),which is superior to the reported devices.This strategy opens a platform to rationally design polynary transition-metal layered hydroxides and their hybrids for efficient supercapacitors.展开更多
Spinal cord injury(SCI)causes motor,sensory and automatic impairment due to rarely axon regeneration.Developing effective treatment for SCI in the clinic is extremely challenging because of the restrictive axonal rege...Spinal cord injury(SCI)causes motor,sensory and automatic impairment due to rarely axon regeneration.Developing effective treatment for SCI in the clinic is extremely challenging because of the restrictive axonal regenerative ability and disconnection of neural elements after injury,as well as the limited systemic drug delivery efficiency caused by blood spinal cord barrier.To develop an effective non-invasive treatment strategy for SCI in clinic,we generated an autologous plasma exosome(AP-EXO)based biological scaffold where AP-EXO was loaded with neuron targeting peptide(RVG)and growth-facilitating peptides(ILP and ISP).This scaffold can be targeted delivered to neurons in the injured area and elicit robust axon regrowth across the lesion core to the levels over 30-fold greater than naïve treatment,thus reestablish the intraspinal circuits and promote motor functional recovery after spinal cord injury in mice.More importantly,in ex vivo,human plasma exosomes(HP-EXO)loaded with combinatory peptides of RVG,ILP and ISP showed safety and no liver and kidney toxicity in the application to nude SCI mice.Combining the efficacy and safety,the AP-EXO-based personalized treatment confers functional recovery after SCI and showed immense promising in biomedical applications in treating SCI.It is helpful to expand the application of combinatory peptides and human plasma derived autologous exosomes in promoting regeneration and recovery upon SCI treatment.展开更多
基金supported by National Natural Science Foundation of China (22033009, 22121002, 22238011)。
文摘To improve the electrocatalytic transformation of carbon dioxide (CO_(2)) to multi-carbon (C_(2+)) products is of great importance.Here we developed a nitrogen-doped Cu catalyst,by which the maximum C_(2+) Faradaic efficiency can reach 72.7%in flow-cell system,with the partial current density reaching 0.62 A cm^(-2).The in situ Raman spectra demonstrate that the *CO adsorption can be strengthened on such a N-doped Cu catalyst,thus promoting the *CO utilization in the subsequent C–C coupling step.Simultaneously,the water activation can be well enhanced by N doping on Cu catalyst.Owing to the synergistic effects,the selectivity and activity for C_(2+) products over the N-deoped Cu catalyst are much improved.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11888101 and U1832202)the Chinese Academy of Sciences (Grant Nos.QYZDB-SSWSLH043,XDB28000000,and XDB33000000)+1 种基金the K.C.Wong Education Foundation (Grant No.GJTD-2018-01)the Informatization Plan of Chinese Academy of Sciences (Grant No.CAS-WX2021SF-0102)。
文摘We report a study of the electronic structure of BaFe_(2)As_(2) under uniaxial strains using angle-resolved photoemission spectroscopy and transport measurements. Two electron bands at the MY point, with an energy splitting of 50 meV in the strain-free sample, shift downward and merge into each other under a large uniaxial strain, while three hole bands at theГ point shift downward together. However, we also observed an enhancement of the resistance anisotropy under uniaxial strains by electrical transport measurements, implying that the applied strains strengthen the electronic nematic order in BaFe_(2)As_(2). These observations suggest that the splitting of these two electron bands at the MY point is not caused by the nematic order in BaFe_(2)As_(2).
基金supported by the National Natural Science Foundation of China(Grant Nos.11888101 and U1832202)the Chinese Academy of Sciences(Grant Nos.QYZDB-SSW-SLH043,XDB28000000,and XDB33000000)+3 种基金the K.C.Wong Education Foundation(Grant No.GJTD-2018-01)the Informatization Plan of Chinese Academy of Sciences(Grant No.CAS-WX2021SF-0102)supported by the Synergetic Extreme Condition User Facility(SECUF)supported by US DOE(Grant Nos.DESC0010526 and DE-SC0012704)。
文摘We report the observation for the pz electron band and the band inversion in Fe1+yTexSe1-xwith angleresolved photoemission spectroscopy. Furthermore, we found that excess Fe(y>0) inhibits the topological band inversion in Fe1+yTexSe1-x,which explains the absence of Majorana zero modes in previous reports for Fe1+yTexSe1-xwith excess Fe. Based on our analysis of different amounts of Te doping and excess Fe, we propose a delicate topological phase in this material. Thanks to this delicate phase, one may be able to tune the topological transition via applying lattice strain or carrier doping.
基金the Civil Airplane Technology Development Program(MJ-2017-G-70)Defense Industrial Technology Development Program(JCKY 2018601 C 011)the MIIT(Ministry of Industry and Information Technology)Key Laboratory of Smart Manufacturing for High-end Aerospace Products,and the Beijing Key Laboratory of Digital Design and Manufacturing.
文摘Background Assembly guided by paper documents is the most widespread type used in the process of aircraft cable assembly.This process is very complicated and requires assembly workers with high-level skills.The technologies of wearable Augmented Reality(AR)and portable visual inspection can be exploited to improve the efficiency and the quality of cable assembly.Methods In this study,we propose a smart assistance system for cable assembly that combines wearable AR with portable visual inspection.Specifically,a portable visual device based on binocular vision and deep learning is developed to realize fast detection and recognition of cable brackets that are installed on aircraft airframes.A Convolutional Neural Network(CNN)is then developed to read the texts on cables after images are acquired from the camera of the wearable AR device.An authoring tool that was developed to create and manage the assembly process is proposed to realize visual guidance of the cable assembly process based on a wearable AR device.The system is applied to cable assembly on an aircraft bulkhead prototype.Results The results show that this system can recognize the number,types,and locations of brackets,and can correctly read the text of aircraft cables.The authoring tool can assist users who lack professional programming experience in establishing a process plan,i.e.,assembly outline based on AR for cable assembly.Conclusions The system can provide quick assembly guidance for aircraft cable with texts,images,and a 3 D model.It is beneficial for reducing the dependency on paper documents,labor intensity,and the error rate.
基金financial support from the Chang Jiang Scholars Program(51073047)the National Natural Science Foundation of China(51773049)+5 种基金the China Aerospace Science and Technology Corporation-Harbin Institute of Technology Joint Center for Technology Innovation Fund(HIT15-1A01)the Harbin city science and technology projects(2013DB4BP031 and RC2014QN017035)the Fundamental Research Funds for the Central Universities(HIT.OCEF.2021028)the Natural Science Funds of Heilongjiang Province(ZD2019B001)the Heilongjiang Touyan Team(HITTY-20190033)the funds from Chongqing Research Institute of HIT。
文摘Polynary transition-metal layered hydroxides are promising energy materials owing to their unique architecture,impressive theoretical capacities,and adjustable compositions.Regulating the dimensional morphology and active sites/redox states are the keys to electrochemical performance enhancement.Distinguish from the reported mono-metal or binary-metal configurations,a new ternary-metal AlCoNi-LTH is coanchored onto a highly graphitized porous N-doped carbon matrix to develop superior 3D hierarchical microporous functional energy hybrids AlCoNi-LTHs/NAC.The constructed hybrids possess superior structural durability,good electrical conductivity,and rich active sites due to the strong interfacial conjunction and favorable synergistic effect between the doped porous carbon and AlCoNi nanosheets.Consequently,the AlCoNi-LTHs/NAC hybrids demonstrate high conductivity,reasonable specific surface area,and superior specific capacitance,and the assembled hybrid battery-type supercapacitor reveals an ideal energy density of 72.6 Wh kg^(-1)at a power density of 625 W kg^(-1),which is superior to the reported devices.This strategy opens a platform to rationally design polynary transition-metal layered hydroxides and their hybrids for efficient supercapacitors.
基金This work was supported by the National Key Research and Development Project of Stem Cell and Transformation Research(2019YFA0112100),ChinaNational Natural Science Foundation of China(81930070)+3 种基金National Natural Science Foundation of China(82102560)the Natural Science Foundation of Shandong Province,China(ZR2021QH097)the No.69 General Fund of China Postdoctoral Science Foundation(2021M691936)Talent project of Shandong University(22480082063100),China.
文摘Spinal cord injury(SCI)causes motor,sensory and automatic impairment due to rarely axon regeneration.Developing effective treatment for SCI in the clinic is extremely challenging because of the restrictive axonal regenerative ability and disconnection of neural elements after injury,as well as the limited systemic drug delivery efficiency caused by blood spinal cord barrier.To develop an effective non-invasive treatment strategy for SCI in clinic,we generated an autologous plasma exosome(AP-EXO)based biological scaffold where AP-EXO was loaded with neuron targeting peptide(RVG)and growth-facilitating peptides(ILP and ISP).This scaffold can be targeted delivered to neurons in the injured area and elicit robust axon regrowth across the lesion core to the levels over 30-fold greater than naïve treatment,thus reestablish the intraspinal circuits and promote motor functional recovery after spinal cord injury in mice.More importantly,in ex vivo,human plasma exosomes(HP-EXO)loaded with combinatory peptides of RVG,ILP and ISP showed safety and no liver and kidney toxicity in the application to nude SCI mice.Combining the efficacy and safety,the AP-EXO-based personalized treatment confers functional recovery after SCI and showed immense promising in biomedical applications in treating SCI.It is helpful to expand the application of combinatory peptides and human plasma derived autologous exosomes in promoting regeneration and recovery upon SCI treatment.