Ephrin ligands interact with Eph receptors to regulate a wide variety of biological and pathological processes. Recent studies have identified several downstream pathways that mediate the functions of these receptors....Ephrin ligands interact with Eph receptors to regulate a wide variety of biological and pathological processes. Recent studies have identified several downstream pathways that mediate the functions of these receptors. Activation of the receptors by ephrin binding results in the phosphorylation of the receptor tyrosine residues. These phospho- rylated residues serve as docking sites for many of the downstream signaling pathways. However, the relative contributions of different phosphotyrosine residues remain undefined. In the present study, we mutated each individual tyrosine residues in the cytoplasmic domain of EphA3 receptor and studied the effects using cell migration, process retraction, and growth cone collapse assays. Stimulation of the EphA3 receptor with ephrin-A5 inhibits 293A cell mi- gration, reduces NG108-15 cell neurite outgrowth, and induces growth cone collapse in hippocampal neurons. Muta- tion of either Y602 or Y779 alone partially decreases EphA3-induced responses. Full abrogation can only be achieved with mutations of both Y602 and Y779. These observations suggest a collaborative model of different downstream pathways.展开更多
文摘Ephrin ligands interact with Eph receptors to regulate a wide variety of biological and pathological processes. Recent studies have identified several downstream pathways that mediate the functions of these receptors. Activation of the receptors by ephrin binding results in the phosphorylation of the receptor tyrosine residues. These phospho- rylated residues serve as docking sites for many of the downstream signaling pathways. However, the relative contributions of different phosphotyrosine residues remain undefined. In the present study, we mutated each individual tyrosine residues in the cytoplasmic domain of EphA3 receptor and studied the effects using cell migration, process retraction, and growth cone collapse assays. Stimulation of the EphA3 receptor with ephrin-A5 inhibits 293A cell mi- gration, reduces NG108-15 cell neurite outgrowth, and induces growth cone collapse in hippocampal neurons. Muta- tion of either Y602 or Y779 alone partially decreases EphA3-induced responses. Full abrogation can only be achieved with mutations of both Y602 and Y779. These observations suggest a collaborative model of different downstream pathways.