The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation resul...The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection.展开更多
Manmade debris and natural meteoroids, travelling in the Low Earth Orbit at a speed of several kilometers per second, pose a severe safety concern to the spacecraft in service through the HyperVelocity Impact(HVI). To...Manmade debris and natural meteoroids, travelling in the Low Earth Orbit at a speed of several kilometers per second, pose a severe safety concern to the spacecraft in service through the HyperVelocity Impact(HVI). To address this issue, an investigation of shock Acoustic Emission(AE) waves induced by HVI to a downscaled two-layer Whipple shielding structure is performed,to realize a quantitative damage evaluation. Firstly a hybrid numerical model integrating smoothparticle hydrodynamics and finite element is built to obtain the wave response. The projectiles, with various impact velocities and directions, are modelled to impact the shielding structure with different thicknesses. Then experimental validation is carried out with built-in miniaturized piezoelectric sensors to in situ sense the HVI-induced AE waves. A quantitative agreement is obtained between numerical and experimental results, demonstrating the correctness of the hybrid model and facilitating the explanation of obtained AE signals in experiment. Based on the understanding of HVI-induced wave components, assessment of the damage severity, i.e., whether the outer shielding layer is perforated or not, is performed using the energy ratio between the regions of ‘‘high frequency" and ‘‘low frequency" in the acquired AE signals. Lastly, the direct-arrival fundamentalsymmetric wave mode is isolated from each sensing signal to be input into an enhanced delay-andsum algorithm, which visualizes HVI spots accurately and instantaneously with different sensor network configuration. All these works demonstrate the potential of quantitative, in situ, and real time HVI monitoring using miniaturized piezoelectric sensor network.展开更多
基金the National Natural Science Foundation of China(Grant Nos.62227901,12202068)the Civil Aerospace Pre-research Project(Grant No.D020304).
文摘The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection.
基金the Hong Kong Research Grants Council via a General Research Fund(Nos.15201416 and 15212417)the National Natural Science Foundation of China(No.51635008)
文摘Manmade debris and natural meteoroids, travelling in the Low Earth Orbit at a speed of several kilometers per second, pose a severe safety concern to the spacecraft in service through the HyperVelocity Impact(HVI). To address this issue, an investigation of shock Acoustic Emission(AE) waves induced by HVI to a downscaled two-layer Whipple shielding structure is performed,to realize a quantitative damage evaluation. Firstly a hybrid numerical model integrating smoothparticle hydrodynamics and finite element is built to obtain the wave response. The projectiles, with various impact velocities and directions, are modelled to impact the shielding structure with different thicknesses. Then experimental validation is carried out with built-in miniaturized piezoelectric sensors to in situ sense the HVI-induced AE waves. A quantitative agreement is obtained between numerical and experimental results, demonstrating the correctness of the hybrid model and facilitating the explanation of obtained AE signals in experiment. Based on the understanding of HVI-induced wave components, assessment of the damage severity, i.e., whether the outer shielding layer is perforated or not, is performed using the energy ratio between the regions of ‘‘high frequency" and ‘‘low frequency" in the acquired AE signals. Lastly, the direct-arrival fundamentalsymmetric wave mode is isolated from each sensing signal to be input into an enhanced delay-andsum algorithm, which visualizes HVI spots accurately and instantaneously with different sensor network configuration. All these works demonstrate the potential of quantitative, in situ, and real time HVI monitoring using miniaturized piezoelectric sensor network.