The phytohormone auxin is implied in steering various developmental decisions during plant morphogenesis in a concentration-dependent manner.Auxin maxima have been shown to maintain meristematic activity,for example,o...The phytohormone auxin is implied in steering various developmental decisions during plant morphogenesis in a concentration-dependent manner.Auxin maxima have been shown to maintain meristematic activity,for example,of the root apical meristem,and position new sites of outgrowth,such as during lateral root initiation and phyllotaxis.More recently,it has been demonstrated that sites of auxin minima also provide positional information.In the developingArabidopsis fruit,auxin minima are required for correct differentiation of the valve margin.It remains unclear,however,how this auxin minimum is generated and maintained.Here,we employ a systems biology approach to model auxin transport based on experimental observations.This allows us to determine the minimal requirements for its establishment.Our simulations reveal that two alternative processes-which we coin "flux-barrier" and "flux-passage"-are both able to generate an auxin minimum,but under different parameter settings.Both models are in principle able to yield similar auxin profiles but present qualitatively distinct patterns of auxin flux.The models were tested by tissue-specific inducible ablation,revealing that the auxin minimum in the fruit is most likely generated by a flux-passage process.Model predictions were further supported through 3D PIN localization imaging and implementing experimentally observed transporter localization.Through such an experimental-modeling cycle,we predict how the auxin minimum gradually matures during fruit development to ensure timely fruit opening and seed dispersal.展开更多
文摘The phytohormone auxin is implied in steering various developmental decisions during plant morphogenesis in a concentration-dependent manner.Auxin maxima have been shown to maintain meristematic activity,for example,of the root apical meristem,and position new sites of outgrowth,such as during lateral root initiation and phyllotaxis.More recently,it has been demonstrated that sites of auxin minima also provide positional information.In the developingArabidopsis fruit,auxin minima are required for correct differentiation of the valve margin.It remains unclear,however,how this auxin minimum is generated and maintained.Here,we employ a systems biology approach to model auxin transport based on experimental observations.This allows us to determine the minimal requirements for its establishment.Our simulations reveal that two alternative processes-which we coin "flux-barrier" and "flux-passage"-are both able to generate an auxin minimum,but under different parameter settings.Both models are in principle able to yield similar auxin profiles but present qualitatively distinct patterns of auxin flux.The models were tested by tissue-specific inducible ablation,revealing that the auxin minimum in the fruit is most likely generated by a flux-passage process.Model predictions were further supported through 3D PIN localization imaging and implementing experimentally observed transporter localization.Through such an experimental-modeling cycle,we predict how the auxin minimum gradually matures during fruit development to ensure timely fruit opening and seed dispersal.