期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries 被引量:1
1
作者 Jiahao Lu Zhimeng Wang +7 位作者 Qi Zhang cheng Sun Yanyan Zhou Sijia Wang Xiangyun Qiu Shoudong Xu rentian chen Tao Wei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期80-89,共10页
Metal-organic frameworks(MOFs) are becoming more and more popular as the fillers in polymer electrolytes in recent years. In this study, a series of MOFs(NH_(2)-MIL-101(Fe), MIL-101(Fe), activated NH_(2)-MIL-101(Fe) a... Metal-organic frameworks(MOFs) are becoming more and more popular as the fillers in polymer electrolytes in recent years. In this study, a series of MOFs(NH_(2)-MIL-101(Fe), MIL-101(Fe), activated NH_(2)-MIL-101(Fe) and activated MIL-101(Fe)) were synthesized and added to PEO-based solid composite electrolytes(SCEs). Furthermore, the role of the —NH_(2) groups and open metal sites(OMSs) were both examined. Different ratios of MOFs vs polymers were also studied by the electrochemical characterizations. At last, we successfully designed a novel solid composite electrolyte containing activated NH_(2)-MIL-101(Fe),PEO, Li TFSI and PVDF for the high-performance all-solid-state lithium-metal batteries. This work might provide new insight to understand the interactions between polymers and functional groups or OMSs of MOFs better. 展开更多
关键词 Solid composite electrolytes NH_(2)-MIL-101(Fe) All solid-state lithium metal batteries Metal-organic frameworks(MOFs) Open metal sites(OMSs)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部