In this study,a numerical method was developed based on peridynamics to determine the ice loads for a ship navigating in level ice.Convergence analysis of threedimensional ice specimen with tensile and compression loa...In this study,a numerical method was developed based on peridynamics to determine the ice loads for a ship navigating in level ice.Convergence analysis of threedimensional ice specimen with tensile and compression loading are carried out first.The effects of ice thickness,sailing speed,and ice properties on the mean ice loads were also investigated.It is observed that the ice fragments resulting from the icebreaking process will interact with one another as well as with the water and ship hull.The ice fragments may rotate,collide,or slide along the ship hull,and these ice fragments will eventually drift away from the ship.The key characteristics of the icebreaking process can be obtained using the peridynamic model such as the dynamic generation of cracks in the ice sheet,propagation and accumulation of ice fragments,as well as collision,rotation,and sliding of the ice fragments along the ship hull.The simulation results obtained for the ice loads and icebreaking process were validated against those determined from the Lindqvist empirical formula and there is good agreement between the results.展开更多
Accurate measurement of trace heavy metal mercury(Hg) in flue gas of coal-fired units is great significance for ecological and environmental protection.Mixed gas was used to simulate the actual flue gas of a power pla...Accurate measurement of trace heavy metal mercury(Hg) in flue gas of coal-fired units is great significance for ecological and environmental protection.Mixed gas was used to simulate the actual flue gas of a power plant in this study.A laser-induced breakdown spectroscopy(LIBS)system for Hg measurement in mixed gas was built to study the effect of mixed gas pressure,Hg concentration in mixed gas and delay time on Hg measurement.The experimental results show that the appropriate low mixed gas pressure can obtain high Hg signal intensity and signal to noise ratio.The Hg signal intensity and signal to noise ratio increased with the increase of Hg concentration in mixed gas.The Hg signal intensity and signal to noise ratio decreased with the increase in delay time.According to the above results,the optimized measurement conditions can be determined.Different Hg concentrations in mixed gas were quantitatively analyzed by the internal standard method and traditional calibration method respectively.The relative error of prediction of the test sample obtained by the internal standard method was within 11.11%.The relative error of prediction of the traditional calibration method was less than 14.54%.This proved that the internal standard method can improve the accuracy of quantitative analysis of Hg concentration in flue gas using LIBS.展开更多
Continuous carbon fiber reinforced lithium aluminosilicate glass ceramics matrix composites(C_f/LAS composites) are joined to Ti60 alloy vacuum brazed using Ti-Zr-Ni-Cu brazing alloy. The effects of the brazing temper...Continuous carbon fiber reinforced lithium aluminosilicate glass ceramics matrix composites(C_f/LAS composites) are joined to Ti60 alloy vacuum brazed using Ti-Zr-Ni-Cu brazing alloy. The effects of the brazing temperature on the interfacial microstructure and mechanical properties of brazed joints are investigated in details. The interfacial microstructure varies apparently with an increase of the brazing temperature. The thicknesses of the banded Ti solid solution(Ti(s, s)) and the reactive layer between Cf/LAS composites and the interlayer grow gradually. The mechanical properties of brazed joints increase firstly and then decrease with an increasing temperature. In addition, a joint that is brazed at 980 °C for 10 min shows the highest shear strength of$38.13 MPa. At the same time, the fracture paths of brazed joints also change as the temperature increases. When the brazing temperature is 950 °C, the fracture position is in the TiC + ZrC +Ti_2O + ZrSi_2+ Ti_5Si_3 layer on the composite side. When the brazing temperature is 980 °C, the fracture position is on the side of the braze seam(Ti, Zr)2(Ni, Cu), Ti_2O + ZrSi_2+ Ti_5Si_3 layer,and carbon fiber in the composite material. When the brazing temperature is 990 °C, the fracture position is in the Ti_2O + ZrSi_2+ Ti_5Si_3 layer on the composite side and the carbon fiber in the composite material.展开更多
基金This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement(Grant No.2017YFE0111400)the National Key R&D Program Strategic International Science and Technology Innovation Cooperation Key Specialities(Grant No.2016YFE0202700)+3 种基金the National Natural Science Foundation of China(Grant Nos.51579054 and 51639004)the Ministry of Industry and Information Technology’s High-tech Ship Research Project(Grant No.2017-614)Mr.Renwei Liu is supported by a two-year visiting student fellowship in University of California,Berkeley from Chinese Scholar Council(Grant No.201706680104)this support is gratefully acknowledged.The authors also graciously acknowledge Professor Shaofan Li of University of California,Berkeley and Fei Han of Dalian University of Technology for their guidance and fruitful discussion regarding this work.
文摘In this study,a numerical method was developed based on peridynamics to determine the ice loads for a ship navigating in level ice.Convergence analysis of threedimensional ice specimen with tensile and compression loading are carried out first.The effects of ice thickness,sailing speed,and ice properties on the mean ice loads were also investigated.It is observed that the ice fragments resulting from the icebreaking process will interact with one another as well as with the water and ship hull.The ice fragments may rotate,collide,or slide along the ship hull,and these ice fragments will eventually drift away from the ship.The key characteristics of the icebreaking process can be obtained using the peridynamic model such as the dynamic generation of cracks in the ice sheet,propagation and accumulation of ice fragments,as well as collision,rotation,and sliding of the ice fragments along the ship hull.The simulation results obtained for the ice loads and icebreaking process were validated against those determined from the Lindqvist empirical formula and there is good agreement between the results.
基金supported by National Natural Science Foundation of China (No. 51506171)。
文摘Accurate measurement of trace heavy metal mercury(Hg) in flue gas of coal-fired units is great significance for ecological and environmental protection.Mixed gas was used to simulate the actual flue gas of a power plant in this study.A laser-induced breakdown spectroscopy(LIBS)system for Hg measurement in mixed gas was built to study the effect of mixed gas pressure,Hg concentration in mixed gas and delay time on Hg measurement.The experimental results show that the appropriate low mixed gas pressure can obtain high Hg signal intensity and signal to noise ratio.The Hg signal intensity and signal to noise ratio increased with the increase of Hg concentration in mixed gas.The Hg signal intensity and signal to noise ratio decreased with the increase in delay time.According to the above results,the optimized measurement conditions can be determined.Different Hg concentrations in mixed gas were quantitatively analyzed by the internal standard method and traditional calibration method respectively.The relative error of prediction of the test sample obtained by the internal standard method was within 11.11%.The relative error of prediction of the traditional calibration method was less than 14.54%.This proved that the internal standard method can improve the accuracy of quantitative analysis of Hg concentration in flue gas using LIBS.
基金supported by the National Natural Science Foundation of China(51172050,51102060,51302050,and U1737205)the Natural Scientific Research Innovation Foundation at Harbin Institute of Technology(HIT.NSRIF.2014129)+1 种基金the Shanghai Sailing Program of China(16YF1411100)the China Aerospace Science and Technology Corporation Aerospace Science and Technology Innovation Fund of China
文摘Continuous carbon fiber reinforced lithium aluminosilicate glass ceramics matrix composites(C_f/LAS composites) are joined to Ti60 alloy vacuum brazed using Ti-Zr-Ni-Cu brazing alloy. The effects of the brazing temperature on the interfacial microstructure and mechanical properties of brazed joints are investigated in details. The interfacial microstructure varies apparently with an increase of the brazing temperature. The thicknesses of the banded Ti solid solution(Ti(s, s)) and the reactive layer between Cf/LAS composites and the interlayer grow gradually. The mechanical properties of brazed joints increase firstly and then decrease with an increasing temperature. In addition, a joint that is brazed at 980 °C for 10 min shows the highest shear strength of$38.13 MPa. At the same time, the fracture paths of brazed joints also change as the temperature increases. When the brazing temperature is 950 °C, the fracture position is in the TiC + ZrC +Ti_2O + ZrSi_2+ Ti_5Si_3 layer on the composite side. When the brazing temperature is 980 °C, the fracture position is on the side of the braze seam(Ti, Zr)2(Ni, Cu), Ti_2O + ZrSi_2+ Ti_5Si_3 layer,and carbon fiber in the composite material. When the brazing temperature is 990 °C, the fracture position is in the Ti_2O + ZrSi_2+ Ti_5Si_3 layer on the composite side and the carbon fiber in the composite material.