Hexavalent chromium, Cr(VI), a highly toxic oxyanion known as a carcinogen and mutagen,is an issue of concern due to its adverse impact on human health. Therefore, development of effective technologies and/or material...Hexavalent chromium, Cr(VI), a highly toxic oxyanion known as a carcinogen and mutagen,is an issue of concern due to its adverse impact on human health. Therefore, development of effective technologies and/or materials for Cr(VI) removal from water has been of great interest for researchers. In this study, an electrospun carbon nanofiber(CNF) mat was prepared via electrospinning polyacrylonitrile(PAN), followed by thermal pre-oxidation and carbonization. Scanning electron microscopy(SEM) observation showed that the fiber diameter of the CNF with carbonization temperature of 950°C(CNF_(950)) was about 266 nm.Potentiometric titration analysis demonstrated that the point of zero charge p H(pHpzc) of CNF_(950) was around 7.93. CNF_(950) demonstrated high adsorption capacity and fast adsorption kinetics for Cr(VI) at pH < 3. Langmuir isotherm calculations showed that the maximum adsorption capacity of Cr(VI) on CNF_(950) was 118.8 mg/g at pH 2. The adsorption isotherm of Cr(VI) on CNF_(950) was well described by the Redlich–Peterson model, revealing that Cr(VI)adsorption was the result of a combination of monolayer and multilayer adsorption,depending on the initial Cr(VI) concentration. Solution pH greatly affected Cr(VI) adsorption onto CNF_(950) due to the electrostatic interaction, and the adsorption capacity was relatively high when pH was below 3. X-ray photoelectron spectroscopy(XPS) analysis revealed that the removal of Cr(VI) might be the result of a combination of redox reaction and electrostatic adsorption. The adsorption-saturated CNF_(950) could be regenerated by NaOH solution. This study extends the potential applicability of electrospun CNF mats for Cr(VI)-contaminated water purification.展开更多
基金financial support received from the National Natural Science Foundation of China(Nos.51578525,5153000136 and 21407142)Science and Technology Planning Project of Fujian Province(No.2016H0042)+1 种基金Science and Technology Planning Project of Xiamen City(No.2017S0065)the Hundred Talents Program of the Chinese Academy of Sciences
文摘Hexavalent chromium, Cr(VI), a highly toxic oxyanion known as a carcinogen and mutagen,is an issue of concern due to its adverse impact on human health. Therefore, development of effective technologies and/or materials for Cr(VI) removal from water has been of great interest for researchers. In this study, an electrospun carbon nanofiber(CNF) mat was prepared via electrospinning polyacrylonitrile(PAN), followed by thermal pre-oxidation and carbonization. Scanning electron microscopy(SEM) observation showed that the fiber diameter of the CNF with carbonization temperature of 950°C(CNF_(950)) was about 266 nm.Potentiometric titration analysis demonstrated that the point of zero charge p H(pHpzc) of CNF_(950) was around 7.93. CNF_(950) demonstrated high adsorption capacity and fast adsorption kinetics for Cr(VI) at pH < 3. Langmuir isotherm calculations showed that the maximum adsorption capacity of Cr(VI) on CNF_(950) was 118.8 mg/g at pH 2. The adsorption isotherm of Cr(VI) on CNF_(950) was well described by the Redlich–Peterson model, revealing that Cr(VI)adsorption was the result of a combination of monolayer and multilayer adsorption,depending on the initial Cr(VI) concentration. Solution pH greatly affected Cr(VI) adsorption onto CNF_(950) due to the electrostatic interaction, and the adsorption capacity was relatively high when pH was below 3. X-ray photoelectron spectroscopy(XPS) analysis revealed that the removal of Cr(VI) might be the result of a combination of redox reaction and electrostatic adsorption. The adsorption-saturated CNF_(950) could be regenerated by NaOH solution. This study extends the potential applicability of electrospun CNF mats for Cr(VI)-contaminated water purification.